对角巷

欢迎来到对角巷,为了艾泽拉斯

深度学习实战(1)--手机跑目标检测模型(YOLO,从DarkNet到Caffe再到NCNN完整打通)

这篇算是关键技术贴,YOLO是什么、DarkNet是什么、Caffe是什么、NCNN又是什么…等等这一系列科普这里就完全不说了,牵扯实在太多,通过其他帖子有一定的积累后,看这篇就相对容易了。 本文核心:把一个目标检测模型跑到手机上 整个工作分以下几个阶段: 1、训练得到一个目标检测模型 目...

2018-10-11 17:44:58

阅读数:25202

评论数:21

Caffe(13)--Keras2Caffe(SSRNet)

SSR-Net: A Compact Soft Stagewise Regression Network for Age Estimation paper:https://github.com/shamangary/SSR-Net/blob/master/ijcai18_ssrnet_pdfa_...

2018-11-20 11:57:30

阅读数:94

评论数:0

Caffe(12)--实现YOLOv2目标检测

DarkNet转Caffe中有很多潜在的问题,在YOLOv1、v2、v3几个网络中有一些特殊的层。要在Caffe中跑YOLO,就得在Caffe中源码实现这些层。这些层的Caffe源码实现可以在网上找到很多。 YOLO特殊层的Caffe框架实现 YOLOv...

2018-10-11 14:13:24

阅读数:727

评论数:0

Caffe(11)--YOLOv1的Detection层实现

1、yolov1论文中分为77=49个网格 2、对于3类的目标检测,每个网格有classes+num(coords+confidence)=3+2*(4+1)=13个参数,其中3为类别(voc中类别为20),则一张图回归出4913=637个参数(每个cell预测1个classes,2个box(每...

2018-09-20 15:37:52

阅读数:163

评论数:0

Caffe(10)--实现YOLOv1目标检测

0、YOLOv1论文 YOLOv1核心思想:从R-CNN到Fast R-CNN一直采用的思路是proposal+分类(proposal提供位置信息。分类提供类别信息),精度高,但速度不行。 YOLOv1更为直接一点,直接在输出层回归bounding box的位置和其所属类别,整张图作为...

2018-09-13 11:29:03

阅读数:222

评论数:0

Caffe(9)--实现多label输入

方法1:把图像和label分开,各自做成lmdb,最后把label的lmdb用slice层分开 参考:https://blog.csdn.net/u013010889/article/details/53098346 方法2:使用hdf5 参考:https://note.youdao...

2018-09-13 11:14:49

阅读数:105

评论数:0

Caffe(8)--实例,验证码识别

传统验证码识别:传统方法通常是先对验证码图像进行字符分割,再进行特征提取、最后通过分类器得到结果。一些验证码加入噪声或线条,字符位置不固定及粘连时,字符分割效果不好,也会影响后续字符识别。除了只包含字母和数字的验证码,国内还有一些识别汉字的验证码、计算加减乘除的验证码、图像匹配和图像分类的验证码,...

2018-09-13 11:10:20

阅读数:235

评论数:0

Caffe(7)--神经网络模型结构可视化

1、Netscope–支持Caffe的神经网络结构在线可视化工具 Netscope是个支持prototxt格式描述的神经网络结构的在线可视工具,支持从GitHub Gist或者编辑器中可视化Caffe的网络结构。网址:http://ethereon.github.io/netscope/qu...

2018-09-05 11:03:06

阅读数:114

评论数:0

Caffe(6)--卷积、池化后输出图像尺寸计算

在图像卷积和池化操作中有固定的kernel_size和stride,当stride > 1时,边界上会有可能发生越界的问题。 Caffe中的卷积、池化后输出图像尺寸计算 (1)卷积 计算定义在conv_layer.cpp中的compute_outpu...

2018-09-05 11:00:03

阅读数:411

评论数:0

Caffe(5)--计算数据集的图像均值

特征标准化(使数据集中所有特征都具有零均值和单位方差)。 零均值:计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减去该均值。 单位方差:在数据的每一维度上除以该维度上数据的标准差。 在大多数情况下,我们并不关注所输入图像的整体明亮程度。比如在目标识别任务中,图像...

2018-09-05 10:53:34

阅读数:106

评论数:0

Caffe(1)--环境配置(Ubuntu16.04+opencv3.1+Anaconda3+CUDA9.0+cuDNN7.0.5)

系统:ubuntu16.04 cuda:9.0(已安装) cudnn:7.0.5(已安装) anaconda:python3.6(已安装) opencv:3.1.0(已安装) 0.安装依赖 sudo apt-get install libprotobuf...

2018-09-05 10:47:00

阅读数:153

评论数:0

Caffe(4)--MobileNets实现,使用自定义数据集进行训练

论文地址:V1,https://arxiv.org/abs/1704.04861;V2,https://arxiv.org/abs/1801.04381 模型实现:Caffe框架(非官方)https://github.com/shicai/MobileNet-Caffe 1、下载模型 ...

2018-09-05 10:21:52

阅读数:343

评论数:0

Caffe(3)--lmdb数据格式相关

caffe对于训练数据格式,支持:lmdb、h5py…… lmdb:常用于单标签数据,像分类等 h5py:用于多标签数据,对于回归等问题 原因: 1、数据类型多种多样,有二进制文件、文本文件、编码后的图像文件(如JPEG、PNG、网络爬取的数据等),不可能用一套代码实现所有类型的...

2018-09-05 10:11:49

阅读数:80

评论数:0

Caffe(2)--LeNet网络各层参数详解

“LeNet” 1、Data Layer 输入图像为:1*28*28,对应Channels*Height*Width layer { name: "mnist" type: "Image...

2018-09-05 10:04:28

阅读数:101

评论数:0

提示
确定要删除当前文章?
取消 删除