TensorFlow学习笔记(4)--实现多层感知机(MNIST数据集)

33 篇文章 3 订阅
20 篇文章 1 订阅

前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率。现在建含一个隐层的神经网络模型(多层感知机)。

import tensorflow as tf
import numpy as np
import input_data

mnist = input_data.read_data_sets('data/', one_hot=True)

n_hidden_1 = 256
n_input    = 784
n_classes  = 10

# INPUTS AND OUTPUTS
x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先占地方,样本个数不确定为None
y = tf.placeholder(tf.float32, [None, n_classes]) # 用placeholder先占地方,样本个数不确定为None

# NETWORK PARAMETERS
weights = {
    'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=0.1)),
    'out': tf.Variable(tf.zeros([n_hidden_1, n_classes]))
}
biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'out': tf.Variable(tf.zeros([n_classes]))
}
print("NETWORK READY")

def multilayer_perceptron(_X, _weights, _biases): # 前向传播,l1、l2每一层后面加relu激活函数
    layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) # 隐层
    return (tf.matmul(layer_1, _weights['out']) + _biases['out']) # 返回输出层的结果,得到十个类别的得分值

pred = multilayer_perceptron(x, weights, biases) # 前向传播的预测值
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # 交叉熵损失函数,参数分别为预测值pred和实际label值y,reduce_mean为求平均loss
optm = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度下降优化器
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()对比预测值的索引和实际label的索引是否一样,一样返回True,不一样返回False
accr = tf.reduce_mean(tf.cast(corr, tf.float32)) # 将pred即True或False转换为1或0,并对所有的判断结果求均值

init = tf.global_variables_initializer()
print("FUNCTIONS READY")

# 上面神经网络结构定义好之后,下面定义一些超参数
training_epochs = 100 # 所有样本迭代100次
batch_size = 100 # 每进行一次迭代选择100个样本
display_step = 5
# LAUNCH THE GRAPH
sess = tf.Session() # 定义一个Session
sess.run(init) # 在sess里run一下初始化操作
# OPTIMIZE
for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = int(mnist.train.num_examples/batch_size)
    # Loop over all batches
    for i in range(total_batch):
        batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐个batch的去取数据
        sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
        avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
    # Display logs per epoch step
    if epoch % display_step == 0:
        train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys})
        test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels})
        print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f"
              % (epoch, training_epochs, avg_cost, train_acc, test_acc))
print("DONE")

迭代100次看下效果,程序运行结果如下:

Epoch: 095/100 cost: 0.076462782 TRAIN ACCURACY: 0.990 TEST ACCURACY: 0.970

最终,在测试集上准确率达到97%,随着迭代次数增加,准确率还会上升。相比之前的Softmax,训练迭代100次我们的误差率由8%降到了3%,对识别银行账单这种精确度要求很高的场景,可以说是飞跃性的提高。而这个提升仅靠增加一个隐层就实现了,可见多层神经网络的效果有多显著。

没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程。多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线、竖线、圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类。

不过,使用全连接神经网络也是有局限的,即使我们使用很深的网络,很多的隐藏节点,很大的迭代次数,也很难在MNIST数据集上达到99%以上的准确率。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,我可以为您介绍使用Torch神经网络实现MNIST数据集分类的步骤。 1. 导入必要的库和数据集 首先,我们需要导入必要的库和数据集。在使用Torch实现MNIST分类时,我们通常会使用torchvision库中的MNIST数据集。可以使用以下代码导入库和数据集: ``` require 'torch' require 'nn' require 'optim' require 'image' require 'gnuplot' require 'torchvision' -- 导入MNIST数据集 trainset = torchvision.datasets.MNIST('./data', true, true) testset = torchvision.datasets.MNIST('./data', false, true) ``` 2. 数据预处理 在使用数据集进行训练之前,我们需要对数据进行预处理。这包括将图像转换为张量、将像素值标准化等。以下是一个例子: ``` -- 将训练集和测试集图像转换为张量 trainset.data = trainset.data:float() testset.data = testset.data:float() -- 将训练集和测试集标签转换为张量 trainset.label = trainset.label:float() + 1 testset.label = testset.label:float() + 1 -- 标准化像素值 mean = trainset.data:mean() std = trainset.data:std() trainset.data:add(-mean):div(std) testset.data:add(-mean):div(std) ``` 3. 定义神经网络模型 接下来,我们需要定义一个神经网络模型。在这里,我们可以使用一个简单的卷积神经网络模型,如下所示: ``` -- 定义一个简单的卷积神经网络模型 model = nn.Sequential() model:add(nn.SpatialConvolution(1, 32, 5, 5)) model:add(nn.ReLU()) model:add(nn.SpatialMaxPooling(2, 2, 2, 2)) model:add(nn.SpatialConvolution(32, 64, 5, 5)) model:add(nn.ReLU()) model:add(nn.SpatialMaxPooling(2, 2, 2, 2)) model:add(nn.View(64 * 4 * 4)) model:add(nn.Linear(64 * 4 * 4, 100)) model:add(nn.ReLU()) model:add(nn.Linear(100, 10)) model:add(nn.LogSoftMax()) ``` 4. 定义损失函数和优化器 在训练神经网络时,我们需要定义一个损失函数和一个优化器。在这里,我们可以使用交叉熵损失函数和随机梯度下降优化器,如下所示: ``` -- 定义损失函数和优化器 criterion = nn.CrossEntropyCriterion() optimizer = optim.SGD(parameters, learning_rate) ``` 5. 训练网络模型 现在我们已经准备好了所有必要的元素,可以开始训练神经网络模型了。以下是一个示例训练循环: ``` -- 训练模型 for i = 1, num_epochs do local train_loss = 0 local train_correct = 0 for j = 1, trainset.size do -- 获取样本和标签 local sample = trainset.data[j] local label = trainset.label[j] -- 向前传递 local output = model:forward(sample) -- 计算损失 local loss = criterion:forward(output, label) -- 计算梯度 local gradOutput = criterion:backward(output, label) model:backward(sample, gradOutput) -- 更新参数 optimizer:updateParameters(learning_rate) -- 计算训练损失和准确率 train_loss = train_loss + loss if torch.argmax(output) == label then train_correct = train_correct + 1 end end -- 打印训练损失和准确率 print(string.format("Epoch %d: Train Loss = %f, Train Accuracy = %f", i, train_loss / trainset.size, train_correct / trainset.size)) end ``` 6. 在测试集上验证模型性能 最后,我们需要在测试集上验证训练出的模型的性能。以下是一个示例代码: ``` -- 在测试集上验证模型性能 local test_loss = 0 local test_correct = 0 for i = 1, testset.size do -- 获取样本和标签 local sample = testset.data[i] local label = testset.label[i] -- 向前传递 local output = model:forward(sample) -- 计算损失 local loss = criterion:forward(output, label) -- 计算准确率 test_loss = test_loss + loss if torch.argmax(output) == label then test_correct = test_correct + 1 end end -- 打印测试损失和准确率 print(string.format("Test Loss = %f, Test Accuracy = %f", test_loss / testset.size, test_correct / testset.size)) ``` 这就是使用Torch实现MNIST分类的基本步骤。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值