茶叶嫩芽检测数据集1733张voc+yolo格式(原图)
茶叶嫩芽检测数据集 | 1733张高清原图 | VOC + YOLO双格式 | 高精度标注 | 适用于AI目标检测模型训练
🌿 数据集简介
本数据集专为茶叶嫩芽(tea shoot)目标检测任务设计,包含 1733 张高清真实场景原图,每张图像均提供精确的矩形框标注,适用于计算机视觉中的目标检测、农业智能化、无人机巡检、智能采摘机器人等前沿AI应用领域。
数据集采用 VOC + YOLO 双格式并行存储,开箱即用,兼容主流深度学习框架(如YOLOv5/v8、Faster R-CNN、SSD、Detectron2等),大幅降低数据预处理成本,助力研究人员与开发者快速构建高精度检测模型。
📦 数据集内容概览
- 图像总数:1733 张(
.jpg格式) - 标注文件:
Annotations/:1733 个.xml文件(Pascal VOC 格式)labels/:1733 个.txt文件(YOLO 格式)- 标签种类:1 类
- 标签名称:
tea(茶叶嫩芽) - 总标注框数:3113 个
- 平均密度:每张图约 1.8 个嫩芽,真实反映自然生长分布
- 图像质量:高清原图,分辨率清晰,无任何增强或合成处理
- 标注方式:人工精标,边界框紧密贴合嫩芽轮廓,确保标注准确性和合理性
📁 文件结构清晰,便于集成:
dataset/ ├── JPEGImages/ # 1733张.jpg原图 ├── Annotations/ # 1733个.xml(VOC格式) └── labels/ # 1733个.txt(YOLO格式) + classes.txt
✅ 适用场景
- 🍵 智慧农业:茶园自动化监测、茶叶生长状态分析
- 🤖 机器人采摘:为茶叶采摘机器人提供视觉识别基础
- 🛰️ 无人机巡检:结合航拍图像实现大范围茶树嫩芽识别
- 🧠 AI模型训练:YOLO、Faster R-CNN、RetinaNet 等目标检测模型的理想训练数据
- 📚 学术研究:可用于小样本学习、目标检测精度优化、农业图像分析等课题
🔧 数据集优势
特性 说明 双格式支持 同时提供 VOC 与 YOLO 格式,适配多种训练框架 原始未增强 所有图片均为真实拍摄原图,无数据增强,贴近实际场景 标注精准 人工逐图标注,确保每个“tea”框准确覆盖嫩芽区域 结构清晰 目录组织规范,易于导入主流训练流程 轻量高效 单类别设计,适合快速验证模型性能或作为迁移学习基础 ⚠️ 特别声明


本数据集仅提供高质量、准确标注的原始数据,不对使用该数据集训练出的模型精度、性能或权重文件做任何保证。建议结合实际应用场景进行数据增强与模型调优。
🚀 立即获取,开启茶叶智能识别之旅!
无论你是农业AI创业者、高校研究人员,还是深度学习爱好者,这份茶叶嫩芽检测数据集都将是你构建智能茶业系统的理想起点!
📥 下载即用 · 标注规范 · 快速上手
👉 适用于:
茶叶识别 农业自动化 目标检测入门 YOLO训练 智慧茶园建设
381

被折叠的 条评论
为什么被折叠?



