茶叶嫩芽检测数据集1733张voc+yolo格式(原图)

茶叶嫩芽检测数据集1733张voc+yolo格式(原图)

茶叶嫩芽检测数据集 | 1733张高清原图 | VOC + YOLO双格式 | 高精度标注 | 适用于AI目标检测模型训练

🌿 数据集简介

本数据集专为茶叶嫩芽(tea shoot)目标检测任务设计,包含 1733 张高清真实场景原图,每张图像均提供精确的矩形框标注,适用于计算机视觉中的目标检测、农业智能化、无人机巡检、智能采摘机器人等前沿AI应用领域。

数据集采用 VOC + YOLO 双格式并行存储,开箱即用,兼容主流深度学习框架(如YOLOv5/v8、Faster R-CNN、SSD、Detectron2等),大幅降低数据预处理成本,助力研究人员与开发者快速构建高精度检测模型。

📦 数据集内容概览

  • 图像总数:1733 张(.jpg 格式)
  • 标注文件
  • Annotations/:1733 个 .xml 文件(Pascal VOC 格式)
  • labels/:1733 个 .txt 文件(YOLO 格式)
  • 标签种类:1 类
  • 标签名称tea(茶叶嫩芽)
  • 总标注框数:3113 个
  • 平均密度:每张图约 1.8 个嫩芽,真实反映自然生长分布
  • 图像质量:高清原图,分辨率清晰,无任何增强或合成处理
  • 标注方式:人工精标,边界框紧密贴合嫩芽轮廓,确保标注准确性和合理性
📁 文件结构清晰,便于集成:
dataset/
├── JPEGImages/     # 1733张.jpg原图
├── Annotations/    # 1733个.xml(VOC格式)
└── labels/         # 1733个.txt(YOLO格式) + classes.txt

✅ 适用场景

  • 🍵 智慧农业:茶园自动化监测、茶叶生长状态分析
  • 🤖 机器人采摘:为茶叶采摘机器人提供视觉识别基础
  • 🛰️ 无人机巡检:结合航拍图像实现大范围茶树嫩芽识别
  • 🧠 AI模型训练:YOLO、Faster R-CNN、RetinaNet 等目标检测模型的理想训练数据
  • 📚 学术研究:可用于小样本学习、目标检测精度优化、农业图像分析等课题

🔧 数据集优势

特性 说明 双格式支持 同时提供 VOC 与 YOLO 格式,适配多种训练框架 原始未增强 所有图片均为真实拍摄原图,无数据增强,贴近实际场景 标注精准 人工逐图标注,确保每个“tea”框准确覆盖嫩芽区域 结构清晰 目录组织规范,易于导入主流训练流程 轻量高效 单类别设计,适合快速验证模型性能或作为迁移学习基础 ⚠️ 特别声明

本数据集仅提供高质量、准确标注的原始数据,不对使用该数据集训练出的模型精度、性能或权重文件做任何保证。建议结合实际应用场景进行数据增强与模型调优。

🚀 立即获取,开启茶叶智能识别之旅!

无论你是农业AI创业者、高校研究人员,还是深度学习爱好者,这份茶叶嫩芽检测数据集都将是你构建智能茶业系统的理想起点!

📥 下载即用 · 标注规范 · 快速上手

👉 适用于:

茶叶识别 农业自动化 目标检测入门 YOLO训练 智慧茶园建设

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不会仰游的河马君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值