过河卒问题

本文介绍了一种算法,用于计算在一个受限制的棋盘上,一个卒子从起点到终点的所有可能路径数量。该算法考虑了棋盘上存在一个固定的马,其控制的区域会阻挡卒子的前进。通过动态规划的方法,最终输出所有有效的路径数量。

棋盘上 A点有一个过河卒,需要走到目标 B 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,A 点 (0, 0)(0,0)、B 点 (n, m)(n,m),同样马的位置坐标是需要给出的。


现在要求你计算出卒从 A 点能够到达 B 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

输入格式
一行四个正整数,分别表示 B 点坐标和马的坐标。

输出格式
一个整数,表示所有的路径条数。

输入输出样例
输入 
6 6 3 3
输出
6
说明/提示
对于 100% 的数据,1≤n,m≤20,0≤ 马的坐标 ≤20。

```Java

import java.util.Scanner;

public class Main{
	
	 Scanner sc = new Scanner(System.in);
 int n = sc.nextInt();
 int m = sc.nextInt();//棋盘大小
 int x = sc.nextInt();
 int y =sc.nextInt();//马的坐标
	
	static int a[][] = new int[n+1][m+1]; //存放马的位置及它可以到达的地方
	static long b[][] = new long[n+1][m+1];//存放路线
	
	public static void main(String args[]) {
		if(x>=2) {
			a[x-2][y+1] = -1;
			if(y>0) {
				a[x-2][y-1] = -1;
			}
		}
		if(y>=2) {
			a[x+1][y-2] = -1;
			if(x>0) {
				a[x-1][y-2] = -1;
			}
		}
		if(y>0) {
			a[x+2][y-1] = -1;
		}
		if(x>0) {
			a[x-1][y+2] = -1;
		}
		a[x][y] = -1;
		a[x+1][y+2] = -1;
		a[x+2][y+1] = -1;//以上操作把马所有可达的地方都赋-1
		
		
		b[0][0] = 1;
		for(int i=0;i<=n;i++) {
			for(int j=0;j<=m;j++) {
				if(i>0 && j>0) {
					b[i][j] = b[i-1][j]+b[i][j-1];
				}
				if(i==0 && j>0)
					b[i][j]=b[i][j-1];//防止越界
                if(j==0 && i>0)
                	b[i][j]=b[i-1][j];//防止数组越界
				if(a[i][j] == -1) {
					b[i][j] = 0;
				}
			}
		}
		System.out.println(b[n][m]);
	}
}

```

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值