Flex中的嵌入资源(Embedding Assets)——Swingguy摘译自Flex 3 Developer's Guide

Flex软件中经常需要使用一些外部的资源,如图片、声音、SWF或字体,虽然你也可以在软件运行的时候引入和载入,但是也可能经常需要直接将这些资源编译(Compile)到软件中,也就是直接嵌入资源(Embedding Assets)。Flex中可以直接嵌入图片image,影片movie,MP3,和TrueType文字。

嵌入资源的利处:

1、比起在运行时访问资源,对嵌入资源的访问速度更加快速;

2、可以用简单的变量访问方式,在多个地方引用所嵌入的资源。这是变量就代表资源,提高写代码的效率;

嵌入资源的弊处:

1、增大了SWF文件的大小,因为是将资源直接包含;

2、由于SWF文件增大,将使得初始化的速度变慢;

3、当资源改变后,需要重新编译SWF文件;

例子1:一个简单的嵌入资源的例子:

<?xml version=”1.0”?>
<!-- embed\ButtonIcon.mxml -->
<mx:Application xmlns:mx=”http://www.adobe.com/2006/mxml”>
<mx:Button label=”Icon Button” icon=”@Embed(source=’logo.gif’)"/>
</mx:Application>

以上粗体部分,使用了@Embed()指令,将logo.gif这个图片直接嵌入到程序中,作为Button按钮的Icon图标。

例子2:用变量引用嵌入的资源

<?xml version="1.0"?>
<!-- embed\ButtonIconClass.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Script>
<![CDATA[
[Embed(source="logo.gif")]
[Bindable]
public var imgCls:Class;
]]>
</mx:Script> ADOBE FLEX 3 BETA 2

<mx:Button label="Icon Button 1" icon="{imgCls}"/>
<mx:Button label="Icon Button 2" icon="{imgCls}"/>

以上粗体部分,表示将logo.gif图片嵌入,并让变量imgCls可以引用该资源。[Bindable]表示该变量imgCls是可以被数据绑定的。之后,就可以在多个地方引用该嵌入资源的变量(见红色粗体)。

另外也可以通过Embed()指令,在样式表中嵌入资源,这通常是在设置UI组件的皮肤时候使用。如下代码:

<?xml version="1.0"?>
<!-- embed\ButtonIconCSS.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml">
<mx:Style>
.myCustomButton {
overSkin:Embed(source="overIconImage.gif");
upSkin:Embed(source="upIconImage.gif");
downSkin:Embed(source="downIconImage.gif");
}
</mx:Style>
<mx:Button label="Icon Button Style Def" styleName="myCustomButton"/>
</mx:Application>

以上代码表示在按钮的常态(up)、鼠标悬停(over)、鼠标按下(down)的状态,使用不同的皮肤。overSkin、 upSkin、downSkin是 Button的对应状态下的皮肤属性。

可嵌入的资源文件格式:
嵌入资源的语法:
根据嵌入位置的不同,语法也各不同:
1、[Embed(parameter1, paramater2, ...)] 元数据标签
这主要在AS文件中,或MXML文件中的 <mx:Script>标签中使用。
2、@Embed(parameter1, paramater2, ...) 指令
这主要在MXML标签中使用。
3、Embed(parameter1, paramater2, ...) 指令
这主要在 <mx:Style> 样式表中使用。
根据情况的不同嵌入资源Embed的返回类型可以是Class或String。
对嵌入的图片资源进行9格缩放(9-slice scaling)
9格图就是把一个图片切分成9个格子,如图:
中间的5区为内容区,将正常缩放;1、3、7、9为角,不进行缩放;2、8将横向缩放;4、6将纵向缩放。
见代码:
<?xml version="1.0"?>
<!-- embed\Embed9slice.mxml -->
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml"
width="1200" height="600">
<mx:Script>
<![CDATA[
[Embed(source="slice_9_grid.gif",
scaleGridTop="25", scaleGridBottom="125",
scaleGridLeft="25", scaleGridRight="125")]
[Bindable]
public var imgCls:Class;
]]>
</mx:Script>

<mx:HBox>
<mx:Image source="{imgCls}"/>
<mx:Image source="{imgCls}" width="300" height="300"/>
<mx:Image source="{imgCls}" width="450" height="450"/>
</mx:HBox>
</mx:Application>
以上代码中,图片slice_9_grid.gif为30px * 130px大小。通过scaleGridTop、scaleGridBottom、scaleGridLeft、 scaleGridRight,上下左右分别留出了5px的边。放大后的结果如图:
以上的9格子方法在制作图片为背景的UI控件皮肤中,是非常有用的。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值