判断一个数是否是素数
哥德巴赫猜想
**内容:**任一大于2的整数都可写成三个质数之和
判断是否是素数
法一:
首先看一个关于质数分布的规律:大于等于5的质数一定和6的倍数相邻。例如5和7,11和13,17和19等等;
证明:令x≥1,将大于等于5的自然数表示如下:
······ 6x-1,6x,6x+1,6x+2,6x+3,6x+4,6x+5,6(x+1),6(x+1)+1 ······
可以看到,不在6的倍数两侧,即6x两侧的数为6x+2,6x+3,6x+4,由于2(3x+1),3(2x+1),2(3x+2),所以它们一定不
原创
2021-02-02 13:49:43 ·
321 阅读 ·
0 评论