HDFS特点
HDFS(Hadoop Distributed File System )Hadoop分布式文件系统。
HDFS有如下特点:
- 保存多个副本,且提供容错机制,副本丢失或宕机自动恢复。默认存3份。
- 运行在廉价的机器上。
- 适合大数据的处理。HDFS默认会将文件分割成block,64M为1个block。然后将block按键值对存储在HDFS上,并将键值对的映射存到内存中。如果小文件太多,那内存的负担会很重。
- 硬件错误是常态,而非异常情况, HDFS可能是有成百上千的 server组成,任何一个组件都有可能一直失效,因此错误检测和快速、自动的恢复是 HDFS的核心架构目标。
- 跑在 HDFS上的应用与一般的应用不同,它们主要是以流式读为主,做批量处理;比之关注数据访问的低延迟问题,更关键的在于数据访问的高吞吐量。
- HDFS 以支持大数据集合为目标,一个存储在上面的典型文件大小一般都在千兆至 T字节,一个单一 HDFS实例应该能支撑数以千万计的文件。
- HDFS 应用对文件要求的是 write-one-read-many访问模型。一个文件经过创建、写,关闭之后就不需要改变。这一假设简化了数据一致性问题,使高吞吐量的数据访问成为可能。典型的如 MapReduce框架,或者一个 web crawler应用都很适合这个模型。
- 移动计算的代价比之移动数据的代价低。一个应用请求的计算,离它操作的数据越近就越高效,这在数据达到海量级别的时候更是如此。将计算移动到数据附近,比之将数据移动到应用所在显然更好, HDFS提供给应用这样的接口。
名词解译
如上图所示,HDFS也是按照Master和Slave的结构。分NameNode、SecondaryNameNode、DataNode这几个角色。
NameNode:是Master节点,管理数据块映射(文件目录、文件和block的对应关系以及block和datanode的对应关系);处理客户端的读写请求;配置副本策略;管理HDFS的名称空间。
SecondaryNameNode:分担namenode的工作量,是NameNode的冷备份;合并fsimage和fsedits然后再发给namenode。
热备份:b是a的热备份,如果a坏掉。那么b马上运行代替a的工作。
冷备份:b是a的冷备份,如果a坏掉。那么b不能马上代替a工作。但是b上存储a的一些信息,减少a坏掉之后的损失。
fsimage:元数据镜像文件(文件系统的目录树。)
edits:元数据的操作日志(针对文件系统做的修改操作记录)
namenode内存中存储的是=fsimage+edits。
SecondaryNameNode负责定时默认1小时,从namenode上,获取fsimage和edits来进行合并,然后再发送给namenode。减少namenode的工作量。
DataNode:Slave节点,负责存储client发来的数据块block;执行数据块的读写操作,大部分容错机制都是在datanode上实现的。
block:数据块,大文件会被分割成多个block进行存储,block大小默认为64MB。每一个block会在多个datanode上存储多份副本,默认是3份。
工作原理
写操作
HDFS分布在三个机架上Rack1,Rack2,Rack3。
b. Client向nameNode发送写数据请求,如图 蓝色虚线①------>。
c. NameNode节点,记录block信息。并返回可用的DataNode,如 粉色虚线②--------->。
Block1: host2,host1,host3
Block2: host7,host8,host4
NameNode具有RackAware机架感知功能,这个可以配置。
若client为DataNode节点,那存储block时,规则为:副本1,同client的节点上;副本2,不同机架节点上;副本3,同第二个副本机架的另一个节点上;其他副本随机挑选。
若client不为DataNode节点,那存储block时,规则为:副本1,随机选择一个节点上;副本2,不同副本1,机架上;副本3,同副本2相同的另一个节点上;其他副本随机挑选。
流式写入过程:
1>将64M的block1按64k的package划分;
2>然后将第一个package发送给host2;
3>host2接收完后,将第一个package发送给host1,同时client想host2发送第二个package;
4>host1接收完第一个package后,发送给host3,同时接收host2发来的第二个package。
5>以此类推,如图 红线实线所示,直到将block1发送完毕。
6>host2,host1,host3向NameNode,host2向Client发送通知,说“消息发送完了”。如图 紫色实线所示。
7>client收到host2发来的消息后,向namenode发送消息,说我写完了。这样就真完成了。如图 黄色粗实线
8>发送完block1后,再向host7,host8,host4发送block2,如图 蓝色实线所示。
9>发送完block2后,host7,host8,host4向NameNode,host7向Client发送通知,如图 绿色实线所示。
10>client向NameNode发送消息,说我写完了,如图 黄色粗实线。。。这样就完毕了。
分析,通过写过程,我们可以了解到:
- 写1T文件,我们需要3T的存储,3T的网络流量带宽。
- 在执行读或写的过程中,NameNode和DataNode通过HeartBeat进行保存通信,确定DataNode活着。如果发现DataNode死掉了,就将死掉的DataNode上的数据,放到其他节点去。读取时,要读其他节点去。
- 挂掉一个节点,没关系,还有其他节点可以备份;甚至,挂掉某一个机架,也没关系;其他机架上,也有备份。
读操作
如图所示,client要从datanode上,读取FileA。而FileA由block1和block2组成。
那么,读操作流程为:
a. client向namenode发送读请求。
b. namenode查看Metadata信息,返回fileA的block的位置。
block1:host2,host1,host3
block2:host7,host8,host4
c. block的位置是有先后顺序的,先读block1,再读block2。而且block1去host2上读取;然后block2,去host7上读取;
上面例子中,client位于机架外,那么如果client位于机架内某个DataNode上,例如,client是host6。那么读取的时候,遵循的规律是: 优选读取本机架上的数据。