双十一卖的东西真的是一年中最便宜的吗?

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Ly4wU5giY/article/details/78442941

一年一度的双十一就要到了,马云定义的这个购物狂欢节让多少男同胞栽在了女朋友的购物车里。


640?wx_fmt=png&wxfrom=5&wx_lazy=1


每到双十一关于双十一的讨论就层出不穷,就比如知乎每年都有一个关于双十一什么值得买的问题,每年这个问题的浏览量都有上千万。


当然除了讨论什么值得买之外,还有一小部分的精明之人在讨论淘宝天猫上每年双十一卖的东西是当年最便宜的吗?还是说只是一个幌子而已。


根据淘宝天猫的双十一策略:双十一主会场的所有商品当天的价格必须低于9月15日至11月10日期间成交最低价的九折、1月12日至12月11日期间不得低于双11当天售价出售。也就是说理论上双十一主会场的商品价格是当年九月份到十一月份的最低价格,当然只是理论上,因为天猫也并没有出台说不按照政策来会做什么处理。


所以为了帮助广大网购同胞解决这一大难题,今天我要来探讨的主题就是:双十一到底是不是一年中商品价格最低的时候?以及双十一应该怎样避免踩雷?


数据样本:天猫双十一主会场30个大分类下每个分类取样500个,并根据历史价格查询网站采集这15000个样本的历史价格。


首先看整体,2017年参加双十一的产品中,在2016年双十一的时候价格是全年最低价的只有17.17%,而高达82.83%的商品在2016年双十一的时候都不是该商品的历史最低价。也就是说从整体上来看双十一的大部分商品的价格都不是全年中的最低价格。


0?wx_fmt=png


除了看整体外对我们更有参考价值的是产品大类,比如说女朋友想买衣服,那我可能就想知道的是女装类商品在双十一的时候是不是全年最低价,或者双十一的时候全年最低价占比多少,这样有利于我决定是否在双十一买。


0?wx_fmt=png


划分到产品大类我们会有不一样的发现,我们发现茶酒、珠宝饰品、家饰三大类的商品中在2016年双十一达到最低价的占比达到了50%以上,其中茶酒达到了62.50%,而女装只有6.48%的商品在双十一的时候才是其最低价!


所以综合上图我总结出:双十一千万不要买衣服包包类商品,如果有需要尽量购置一些茶酒、珠宝饰品、图书音像、家具器材和医疗保健等产品。


0?wx_fmt=png


除了看商品大类之外,商品所属城市也是一个很大看点,比如说你看到某一款你想要的商品在新疆或者黑龙江,那么你在双十一买到的价格是全年最低价的可能性就很大,相反如果商品是在其他城市的那么这种可能行将很小。上图中已经排除一些样本中数据比较少的城市所以造成部分空缺。


当然我们买东西的时候很多时候是没那个心思看城市的,那么店铺你一定要看,有的店铺仗着店大欺人,有的店铺小而诚信。我们可以看一下在2016双十一的时候这些参与活动的店铺中到底有多少的商品是全年价格最低的。


0?wx_fmt=png


当然以上的店铺只能做一个简单的参考了,毕竟我不是采集的全量的数据,你可能看不清楚店铺名称那说明我别有用心了。


以上是我通过数据中发现的:双十一的商品价格有超过80%都不是该商品全年最低价,并且通过以上分析你应该学会了如何避免踩雷?那么到底在双十一是否能享受到优惠呢?答案是肯定的,具体怎么做?如果在双十一之前小甲还有空一定会写上这一篇!


还不赶快把你这篇文章、这些经验、这些事实转发给你那每逢双十一就剁手的室友、同事、朋友又或者女朋友!

640?wx_fmt=jpeg

知乎:路人甲

用程序员的方式看世界

阅读更多

开源Hadoop真的便宜吗?

09-06

在美国举行的2014数据仓库研究所TDWI高峰会议上,有着丰富数据生命周期管理经验的咨询师Richard Winter做了演讲,他指出使用开源Hadoop架构时,要注意计算数据成本。因为很多隐性的成本潜伏在表面免费的架构中,常常被人忽略。硬件成本只是很少的一部分。rnWinter表示:“很多Hadoop的成本并非来自系统本身,比如开发和管理系统的成本就不容小觑。”rnWinter指出,针对Hadoop集群的应用开发和周边工具集的开发依然是Hadoop发展中最重要的。总体来看,Hadoop还是所有数据架构中比较廉价的。rn不过Winter建议,数据管理者在衡量Hadoop可用性的时候,应该看具体的应用类型。rn[b]计算IT成本[/b]rnHadoop是以Java为基础的,对于如何衡量Hadoop的成本,Winter建议道要兼顾存储、管理、分析、开发和系统成本。在他的研究中,他也引用了一些一般性数据,比如他从一个追踪薪酬的网站了解到一般Java开发者的薪水,而他要为员工增加50%的一般性开销。Winter还在自己的网站上列出了更多资料。rnWinter还考虑了Hadoop中开发查询的成本,这是只有高水平的开发者才能胜任的。同时,他还比较了在数据仓库和Hadoop环境下做简单查询和复杂查询需要的代码数和成本有什么不同。他发现,在Hadoop环境下创建查询要复杂的多,Hadoop文件系统、MapReduce、Java和SQL替代品(比如Hive)等都需要更多的代码,这是企业面临的问题。rnWinter表示:“只在一小部分公司中,Hadoop应用的很广泛,因为这些公司本身有很强大的Java团队。”而在大多数公司中,Hadoop的应用还很有限。rn[b]善用技术优势[/b]rn在峰会现场,Winter采访了很多与会者,询问数据仓库项目和Hadoop项目的成本问题,不同的用户给出了截然不同的回答。rn如果把所有费用都考虑进去,用Hadoop重新创建一个企业级数据仓库系统要比使用传统基于SQL的数据仓库贵得多。但如果你需要数据分级处理系统或数据池风格的应用系统支持数据分析工作,那么Hadoop在还是有成本优势的,虽然它的花费也很多。rnWinter指出,Hadoop可以监测大量数据中的异常值,哪怕只有细微变化,工作人员都可以发现。这在物联网领域有很重要的应用。以航空公司的引擎数据分析为例,只有在数据偏离异常值的时候,数据才有被关注的价值。rn很多因素,包括用例都会影响技术类型的选择。比如在系统拥有更多数据源、更多用户、需要更多查询的时候,久经考验的数据仓库技术就能表现出卓越的技术优势。但如果情况正相反,你可能就要选择Hadoop了。rn进一步讲,Hadoop和传统数据仓库更有可能融合使用。数据管理者要做的不只是为应用挑选正确的平台,还要了解不同的技术,同时采用,分开使用。rnrn转自http://www.searchbi.com.cn/showcontent_84777.htm

没有更多推荐了,返回首页