交叉熵tf.nn.softmax_cross_entropy_with_logits的用法

在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化的值   tf.nn.softmax_cross_entropy_with_logits(log...

2017-05-15 13:18:46

阅读数:585

评论数:0

Tensorflow一些常用基本概念与函数(3)

摘要:本系列主要对tf的一些常用概念与方法进行描述。本文主要针对tensorflow的数据IO、图的运行等相关函数进行讲解。为‘Tensorflow一些常用基本概念与函数’系列之三。 1、序言 本文所讲的内容主要为以下相关函数: 操作组 操作 Data IO (Python fun...

2017-05-13 16:47:45

阅读数:279

评论数:0

Tensorflow一些常用基本概念与函数(2)

摘要:本文主要对tf的一些常用概念与方法进行描述。为‘Tensorflow一些常用基本概念与函数’系列之二。 1、tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为...

2017-05-13 16:46:59

阅读数:482

评论数:0

Tensorflow一些常用基本概念与函数(1)

摘要:本文主要对tf的一些常用概念与方法进行描述。 1、tensorflow的基本运作 为了快速的熟悉TensorFlow编程,下面从一段简单的代码开始: import tensorflow as tf #定义‘符号’变量,也称为占位符 a = tf.placeholder(&q...

2017-05-13 16:45:27

阅读数:443

评论数:0

[重要] tensorflow二元或softmax分类例子(手写体)

参考这个官方文档   王津的例子   from tensorflow.examples.tutorials.mnist import input_data #或import input_data import os os.environ['TF_CPP_MIN_LOG_LEVEL'] =...

2017-05-13 12:32:07

阅读数:748

评论数:0

[重要] tensorflow笔记(二) :常用函数说明

1.矩阵操作 1.1矩阵生成 这部分主要将如何生成矩阵,包括全0矩阵,全1矩阵,随机数矩阵,常数矩阵等 tf.ones | tf.zeros tf.ones(shape,type=tf.float32,name=None)  tf.zeros([2, 3], int32)  用法类似,都是...

2017-05-13 11:31:06

阅读数:342

评论数:0

[重要] tensorflow笔记(一):流程,概念和简单代码注释

  注意: # 建立抽象模型 x = tf.placeholder(tf.float32, [None, 784]) # 输入占位符 y = tf.placeholder(tf.float32, [None, 10]) # 输出占位符(预期输出) W = tf.Variable(tf.ze...

2017-05-13 11:29:14

阅读数:249

评论数:0

[重要]tensorflow逻辑回归例子

成本函数是“交叉熵”(交叉熵)交叉熵产生于信息论里面的信息压缩编码技术,但是它后来演变成为从博弈论到机器学习等其他领域里的重要技术手段它的定义如下。: y  是我们预测的概率分布,  y'  是实际的分布(我们输入的one-hot vector)。比较粗糙的理解是,交叉熵是用来衡量我们的预测...

2017-05-10 21:17:54

阅读数:899

评论数:0

[重要] tensorflow线性回归例子

  loss = tf.reduce_mean(tf.square(y - y_)) optimizer = tf.train.GradientDescentOptimizer(0.5) 线性回归最常用的耗费函数就是MSE均方误差 多变量线性回归例子 from __future__ i...

2017-05-09 21:59:48

阅读数:1744

评论数:0

深度学习中的Data Augmentation方法(转)基于keras

在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得...

2017-05-06 22:03:17

阅读数:736

评论数:0

python库的安装

查看Anaconda为我们安装的python相关的包 conda list 安装库 (1)安装mingw                 conda install mingw libpython       (2)安装theano pip install theano pip insta...

2017-05-06 15:31:26

阅读数:220

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭