火爆全网的老照片修复技术,今天手把手教你用怎么玩

大家好,我是辰哥~

点击下方名片关注和星标『Python研究者』!

👆点击关注|设为星标|干货速递👆


小伙伴们应该在别的自媒体平台上看到过,关于老照片修复的文章或短视频,而这项技术目前在用户群体中很受欢迎,目前作为服务早早已经在各大电商平台售卖了

f206b22d22cab520f042b996b651c266.png

作为一个技术号主,今天给大家介绍一个老照片修复相关的 Github 项目,并手把手教学,带大家将这个项目起来,

学会了之后可以把项目应用到自己收集的图片上,有想法的读者也可以借助这个项目帮别人修复照片赚点零花钱,岂不美滋滋~

Github 项目叫  Bringing-Old-Photos-Back-to-Life,是微软公司把去年发表在 CVPR 上的一篇期刊的源码,项目地址 https://github.com/microsoft/Bringing-Old-Photos-Back-to-Life

名称就代表了项目用途:对老照片进行修复,恢复它原有的样貌;下面是官方公布的一些修复前后对比效果图,看上去是不是很赞 ~

1ff72108610c396d76199dfe18f524c9.png

根据上面给定的样例,如果对项目的功能细分的话可分为以下三类

  • 1,旧照片全景修复;

  • 2,照片折痕识别、修复;

  • 3,照片人脸识别、人脸部分增强;

上面对项目一个简单介绍以后,下面开始正式介绍它的用法,先交代一下本次的测试环境:

  • OS: Windows 10,

  • Python :python 3.7.6,

  • IDE : Pycharm;

  • torch : 1.6.0+cpu

  • torchvision :0.7.0+cpu

1,下载项目,克隆到本地
5949e3574faf5d3385d49bd22a9f0bcd.png

项目下载方式有两种,Download Zip 或 git 命令(需借助 Git 工具) ;Download Zip 通过浏览器来下载,得到的是个解压包,下载到本地之后解压即可

解压后的目录如下:

e41934442b65dc2f79b203972334e2aa.png
2,配置环境

该项目是基于深度学习训练得到的,但官方已经提供了训练好的权重文件,可以直接下载下来供我们使用(网络当然也可以重新训练,但极其不建议,因为耗时、耗钱并且最终权重精度远不如官方),一共需要配置 3 部分权重文件

2.1 Global 权重配置

该权重是用于图片全局修复,下载地址

https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Global/checkpoints.zip

下载后把文件加压至 ./Global 文件目录下

2.2  Face_Detection 权重

在前面项目介绍中,提到过该项目除了可以照片修复之外,还可以进行人脸增强,简单理解就是把模糊的人脸图像清晰化

人脸增强 首先需要解决的是人脸识别问题,项目中借助的是一个Python库 dlib,关于 dlib 使用可以参考之前我写的一篇文章 实现人脸识别、人脸68个特征点提取,或许这个 Python 库能帮到你!

dlib 库安装也可以通过 pip 工具,但需要注意两个点 :

  • 1, pip 安装 dlib 之前,需提前安装好 Cmake  ,pip install Cmake,否则会安装失败;

  • 2,用 dlib 进行人脸识别需要下载一个权重文件

dlib 权重文件下载地址如下,下载完之后将权重文件解压至 文件夹 ./Face_Detection/

http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
2.3 Face_Enhancement 权重

Face_Enhancement 权重用于人脸部位增强,下载后权重文件解压至 ./Face_Enhancement ,下载地址如下

https://facevc.blob.core.windows.net/zhanbo/old_photo/pretrain/Face_Enhancement/checkpoints.zip
2.4 Synchronized-BatchNorm-PyTorch

这是 Pytorch 框架的一个 同步BatchNorm 一个分支仓库,此项目中用到了这个模块;仓库地址

https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

26a97da993e10b62ade97150c9c71eb3.png

将仓库克隆到本地,解压后目录如下:

f642dd4d34e2e47e35c43a6495a14646.png

项目中两处地方用到了 sync_batchnorm 文件夹,这里需要注意下一下

1,将 sync_batchnorm 复制到 Face_Enhancement/models/network 文件夹下,还需要改动一点项目中的代码部分,找到 Face_Enhancement/models/network/normalize.py 脚本,更改第 8 行代码,将

from models.networks.sync_batchnorm import SynchronizedBatchNorm2d

改为

from models.networks.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d
c5e27007db448dcc39626c11c9eed7d8.png

2,将 sync_batchnorm 复制到 Global/detection_models ,找到 Global/detection_models/network.py 脚本,更改第  7 行代码,将

from detection_models.sync_batchnorm import DataParallelWithCallback

改为

from detection_models.sync_batchnorm.replicate import DataParallelWithCallback
ebb25119c1485740b984c2871e8cee0d.png
2.5 安装依赖项

在终端输入下面命令,安装项目中所需的第三方程序包

pip install -r requirements.txt
3,运行,修复自己收集的图片

上面环境配置好之后,下面就可以正常使用了;在项目中官方给的有测试图片,存放在 test_images, 分为两类

  • old 老照片,没有折痕的照片;

4b606c1d8bcf3ae0a41a47d099fd5dfa.png
  • old_w_scratch ,有折痕的照片

684234da024845ec44d17a804f480416.png
3.1 修复不带折痕的照片

对于不带折痕的照片,终端输入时需要三个参数,

  • --input_folder ,存放需要修复图片的文件路径,不指定时默认为 ./test_images/old;

  • --output_folder,存放修复后图片的文件路径,不指定时默认为 ./output/

  • --GPU,指定用到的 GPU 编号,可设定为 00,10,1,2  ,没有 GPU 配置时 设为 -1 表示运行时只用 CPU ;设定 GPU 时需要确保配置的 Pytorch 是 GPU 版本,相对 CPU 的话,GPU 测试时间会更短;

测试时,启动命令如下,这里 --input_folder、--output_folder参数都为默认,所以命令中加这两个参数,电脑比较渣没有 GPU  所以设为 -1;

python run.py --GPU -1
3.2 修复带折痕的照片

与不带折痕相比,修复带折痕照片要多加入一个参数 --with_scratch,还有一点不同的是存放原照片默认路径更改为为 ./test_images/old_w_scratch ,其它参数设置见 3.1

终端中输入的测试命令如下:

python run.py --GPU -1 --with_scratch

最终的运行结果

a13578a9d98eea32232dd996b72c0a21.png

官方在 ./test_images/old./test_images/old_w_scratch 文件夹下提供的有测试图片,读者们想要测试自己收集的图片时,有两种方法

  • 1,把自己图片放入默认 --input_folder 文件夹中,运行时无需指定 --input_folder 参数

  • 2,运行命令指定 --input_folder参数,后跟自己存放照片的文件路径;

关于此项目的使用方法,基本就这些了,最后在这里贴几张我运行得到的几张修复图

不带折痕的

图一

f86b2ac568602149bbc30db8e05f532a.png

图二

41fad1520ca10f032333fddfa8fc3fbe.png

图三

ecd667dcb0d4ce23c5c1b07607dd18d4.png

图四

fdd83ccd29ba9e1a91563eac5de923d5.png

上面这张图大致一看没什么变化,是因为原图像本身就很清晰,但如果把图片放大的话就明显看到两者之间的差距

放大后的左图

5bec3b87ba4b12aa7607888674d193b1.png

放大后的右图

e814455c02ba9a2e8f182c0805f6b9c4.png

带有折痕的图片修复

图一

b9e1565f79ef619eca2e587b54e1c3b7.png

图二

9d290b8964e8b5c915162c18d326b155.png

图三

5a44744a2f578841fd40ac0f622f3df2.png
项目源码获取

为了方便起见,我已经把配置好的项目文件打包成一个解压包,解压后只需安装项目中的所需依赖项即可,无需再配置权重文件;

pip install -r requirements.txt

项目源码获取方式,在公众号后台回复关键字 210404 即可

小结

关于本项目中图像修复技术原理,这里并没有特别介绍,如果只是想用一下这项技术的话,这篇文章已经足够能帮到你了;当然如果有读者想深入了解一下这项技术的背后原理,可以阅读一下原 Paper《Bringing Old Photos Back to Life》

好了,以上就是本篇文章的全部内容了,最后感谢大家的阅读,我们下期见~

往期推荐 点击查看

一行 Python 代码能实现什么丧心病狂的功能?

2022-01-05

91fe4fa7e5b2ecb43699dc92a3ce6ad9.png

17个常见的Python运行时错误,你中招了没?

2022-01-04

ff2f77afb9a9fb91e3bced929a2b08da.png

毕业设计!Python实现学生教师刷脸签到系统

2022-01-03

b910ab1158091468c494ca3eb8b2bdcb.png

53个技巧!熬夜总结Python 使用和高性能技巧大集合!

2022-01-03

f9235906287607776181fb3ac900facc.png

一个小破网站,居然比 Python 官网还牛逼

2022-01-02

671b8907f6c21404ea4973e0d6317cc2.png

可视化配色方案自由啦 (Python版)

2022-01-02

7e4911dec8e8e9c02f45f4e82cbe270f.png

dc8b70f92600f1a07c85df2d145fbc05.png

分享

6b4f4f607f15b23d95b36c2a5ead8816.png

收藏

3ea508f529934129e128879fd4c7754f.png

点赞

d1f4f378333018b67b83b2a661241d15.png

在看

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值