测试用例设计——正交实验设计法

两个概念:

因素:在一次试验中,我们把影响试验结果的量称为试验因素,简称因素。我们可以把因素看作是自变量,把试验结果看作是因素的函数。

水平:在试验中,每一个因素都可能处于不同的状态或状况,我们把因素的状态或状况叫做因素的水平,简称水平。

两个特点:

(1)“均匀分散”:该特点使得测试点均匀的分布在测试范围内,让每个测试点都具有充分的代表性

(2)以三因素三水平为例。三因素是A,B,C则因素A对应的三水平是A1,A2,A3,因素B对应的三水平是B1,B2,B3,因素C对应的三水平是C1,C2,C3。

优点:

(1)节省测试工作时间

(2)测试用例的数量可控

(3)具有一定的覆盖率

正交表的构成:

正交表的表现形式是L_{a}(b^{c}),其中L表示正交设计,a表示试验的总次数即正交表的行数,b表示因素的水平即正交表的列数,c则表示因素的水平数。并且正交表满足a=b(c-1)+1

测试步骤:

(1)有哪些因素(变量)

(2)每个因素有哪几个水平(变量的取值)

(3)选择一个合适的正交表

(4)把变量的值映射到表中

(5)把每一行的各因素水平的组合作为一个测试用例

(6)加上你认为可疑且没有在表中出现的用例组合

两个性质:

(1)每一列中的各数字(即因素的水平)出现的次数一样多;

(2)任意两列所构成的各个有序对出现的次数一样多

注:所有正交表一定要满足以上两条性质

常见的正交表:

常见的正交表有九个,分别是L_{4}2^{3}L_{8}2^{7}L_{9}3^{4}L_{12}2^{11}L_{16}4^{5}L_{25}5^{6}L_{8}(4\times 2^{4})L_{12}(3\times 2^{4})L_{16}(4^{4}\times2 ^{3})。详细见博客常见正交表

©️2020 CSDN 皮肤主题: 像素格子 设计师:CSDN官方博客 返回首页