3种堆内缓存算法,赠源码和设计思路

原创:小姐姐味道(微信公众号ID:xjjdog),欢迎分享,转载请保留出处。

要说计算机系统里,什么技术把tradeoff体现的淋漓尽致,那肯定是缓存无疑。为了协调高速部件和低速部件的速度差异,加入一个中间缓存层,是解决这种冲突最有效的方案。

其中,JVM堆内缓存是缓存体系中重要的一环,最常用的有FIFO/LRU/LFU三种算法。

  1. FIFO是简单的队列,先进先出。

  2. LRU是最近最少使用,优先移除最久未使用的数据。是时间维度

  3. LFU是最近最不常用,优先移除访问次数最少的数据。是统计维度

由于过期也是缓存的一个重要特点。所有在设计这三种缓存算法时,需要额外的存储空间去存储这个过期时间。

以下将讨论这三种缓存算法的操作和设计要点,但暂未考虑高并发环境

FIFO

先进先出,如果缓存容量满,则优先移出最早加入缓存的数据;其内部可以使用队列实现。

fifo

操作

  • Object get(key) :获取保存的数据,如果数据不存在或者已经过期,则返回null。

  • void put(key,value,expireTime):加入缓存。 无论此key是否已存在,均作为新key处理(移除旧key);如果空间不足,则移除已过期的key,如果没有,则移除最早加入缓存的key。过期时间未指定,则表示永不自动过期。

  • 注意 ,我们允许key是有过期时间的,这一点与普通的FIFO有所区别,所以在设计此题时需要注意。(也是面试考察点,偏设计而非算法)

普通的FIFO或许大家都能很简单的写出,增加了过期时间的考虑之后,在设计时需要多考虑。如下示例,为暂未考虑并发环境的FIFO设计。

设计思路

1)用普通的hashMap保存缓存数据。
2)需要额外的map用来保存key的过期特性,例子中使用了TreeMap,将“剩余存活时间”作为key,利用TreeMap的排序特性。

public class FIFOCache {
  
    //按照访问时间排序,保存所有key-value
    private final Map<String,Value> CACHE = new LinkedHashMap<>();
  
    //过期数据,只保存有过期时间的key
    //暂不考虑并发,我们认为同一个时间内没有重复的key,如果改造的话,可以将value换成set
    private final TreeMap<Long, String> EXPIRED = new TreeMap<>();
  
    private final int capacity;
  
    public FIFOCache(int capacity) {
        this.capacity = capacity;
    }
  
    public Object get(String key) {
        //
        Value value = CACHE.get(key);
        if (value == null) {
            return null;
        }
  
        //如果不包含过期时间
        long expired = value.expired;
        long now = System.nanoTime();
        //已过期
        if (expired > 0 && expired <= now) {
            CACHE.remove(key);
            EXPIRED.remove(expired);
            return null;
        }
        return value.value;
    }
  
    public void put(String key,Object value) {
        put(key,value,-1);
    }
  
  
    public void put(String key,Object value,int seconds) {
        //如果容量不足,移除过期数据
        if (capacity < CACHE.size()) {
            long now = System.nanoTime();
            //有过期的,全部移除
            Iterator<Long> iterator = EXPIRED.keySet().iterator();
            while (iterator.hasNext()) {
                long _key = iterator.next();
                //如果已过期,或者容量仍然溢出,则删除
                if (_key > now) {
                    break;
                }
                //一次移除所有过期key
                String _value = EXPIRED.get(_key);
                CACHE.remove(_value);
                iterator.remove();
            }
        }
  
        //如果仍然容量不足,则移除最早访问的数据
        if (capacity < CACHE.size()) {
            Iterator<String> iterator = CACHE.keySet().iterator();
            while (iterator.hasNext() && capacity < CACHE.size()) {
                String _key = iterator.next();
                Value _value = CACHE.get(_key);
                long expired = _value.expired;
                if (expired > 0) {
                    EXPIRED.remove(expired);
                }
                iterator.remove();
            }
        }
  
        //如果此key已存在,移除旧数据
        Value current = CACHE.remove(key);
        if (current != null && current.expired > 0) {
            EXPIRED.remove(current.expired);
        }
        //如果指定了过期时间
        if(seconds > 0) {
            long expireTime = expiredTime(seconds);
            EXPIRED.put(expireTime,key);
            CACHE.put(key,new Value(expireTime,value));
        } else {
            CACHE.put(key,new Value(-1,value));
        }
  
    }
  
    private long expiredTime(int expired) {
        return System.nanoTime() + TimeUnit.SECONDS.toNanos(expired);
    }
  
    public void remove(String key) {
        Value value = CACHE.remove(key);
        if(value == null) {
            return;
        }
        long expired = value.expired;
        if (expired > 0) {
            EXPIRED.remove(expired);
        }
    }
  
  
    class Value {
        long expired; //过期时间,纳秒
        Object value;
        Value(long expired,Object value) {
            this.expired = expired;
            this.value = value;
        }
    }
}

LRU

least recently used,最近最少使用,是目前最常用的缓存算法和设计方案之一,其移除策略为“当缓存(页)满时,优先移除最近最久未使用的数据”,优点是易于设计和使用,适用场景广泛。算法可以参考leetcode 146 (LRU Cache)。

操作

  • Object get(key):从cache中获取key对应的数据,如果此key已过期,移除此key,并则返回null。

  • void put(key,value,expired):设置k-v,如果容量不足,则根据LRU置换算法移除“最久未被使用的key”。 需要注意,根据LRU优先移除已过期的keys,如果没有,则根据LRU移除未过期的key。如果未设定过期时间,则认为永不自动过期。

  • 这里的设计关键是过期时间特性,这与常规的LRU有所不同。

设计思路

  • LRU的基础算法,需要了解;每次put、get时需要更新key对应的访问时间,我们需要一个数据结构能够保存key最近的访问时间且能够排序。

  • 既然包含过期时间特性,那么带有过期时间的key需要额外的数据结构保存。

  • 暂时不考虑并发操作;尽量兼顾空间复杂度和时间复杂度。

  • 此题仍然偏向于设计题,而非纯粹的算法题。

此题代码与FIFO基本相同,唯一不同点为get()方法,对于LRU而言,get方法需要重设访问时间(即调整所在cache中顺序)

public Object get(String key) {
    //
    Value value = CACHE.get(key);
    if (value == null) {
        return null;
    }
  
    //如果不包含过期时间
    long expired = value.expired;
    long now = System.nanoTime();
    //已过期
    if (expired > 0 && expired <= now) {
        CACHE.remove(key);
        EXPIRED.remove(expired);
        return null;
    }
    //相对于FIFO,增加顺序重置
    CACHE.remove(key);
    CACHE.put(key,value);
    return value.value;
}

LFU

最近最不常用,当缓存容量满时,移除 访问次数 最少的元素,如果访问次数相同的元素有多个,则移除最久访问的那个。设计要求参见leetcode 460( LFU Cache)

public class LFUCache {
  
    //主要容器,用于保存k-v
    private Map<String, Object> keyToValue = new HashMap<>();
  
    //记录每个k被访问的次数
    private Map<String, Integer> keyToCount = new HashMap<>();
  
    //访问相同次数的key列表,按照访问次数排序,value为相同访问次数到key列表。
    private TreeMap<Integer, LinkedHashSet<String>> countToLRUKeys = new TreeMap<>();
  
    private int capacity;
  
    public LFUCache(int capacity) {
        this.capacity = capacity;
        //初始化,默认访问1次,主要是解决下文
    }
  
    public Object get(String key) {
        if (!keyToValue.containsKey(key)) {
            return null;
        }
  
        touch(key);
        return keyToValue.get(key);
    }
  
    /**
     * 如果一个key被访问,应该将其访问次数调整。
     * @param key
     */  
    private void touch(String key) {
        int count = keyToCount.get(key);
        keyToCount.put(key, count + 1);//访问次数增加
        //从原有访问次数统计列表中移除
        countToLRUKeys.get(count).remove(key);
  
        //如果符合最少调用次数到key统计列表为空,则移除此调用次数到统计
        if (countToLRUKeys.get(count).size() == 0) {
            countToLRUKeys.remove(count);
        }
  
        //然后将此key的统计信息加入到管理列表中
        LinkedHashSet<String> countKeys = countToLRUKeys.get(count + 1);
        if (countKeys == null) {
            countKeys = new LinkedHashSet<>();
            countToLRUKeys.put(count + 1,countKeys);
        }
        countKeys.add(key);
    }
  
    public void put(String key, Object value) {
        if (capacity <= 0) {
            return;
        }
  
        if (keyToValue.containsKey(key)) {
            keyToValue.put(key, value);
            touch(key);
            return;
        }
        //容量超额之后,移除访问次数最少的元素
        if (keyToValue.size() >= capacity) {
            Map.Entry<Integer,LinkedHashSet<String>> entry = countToLRUKeys.firstEntry();
            Iterator<String> it = entry.getValue().iterator();
            String evictKey = it.next();
            it.remove();
            if (!it.hasNext()) {
                countToLRUKeys.remove(entry.getKey());
            }
            keyToCount.remove(evictKey);
            keyToValue.remove(evictKey);
  
        }
  
        keyToValue.put(key, value);
        keyToCount.put(key, 1);
        LinkedHashSet<String> keys = countToLRUKeys.get(1);
        if (keys == null) {
            keys = new LinkedHashSet<>();
            countToLRUKeys.put(1,keys);
        }
        keys.add(key);
    }
}

End

本文力求比较三个基本的缓存算法,以便对缓存建设之路有一个比较笼统的感觉。

更加易用的cache,可以参考guava的实现。谨希望这三个代码模版,能够对你有所帮助。

作者简介:小姐姐味道  (xjjdog),一个不允许程序员走弯路的公众号。聚焦基础架构和Linux。十年架构,日百亿流量,与你探讨高并发世界,给你不一样的味道。我的个人微信xjjdog0,欢迎添加好友,进一步交流。

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读