目录
实现 strStr()
实现 strStr() 函数:给你两个字符串 haystack 和 needle ,请你在 haystack 字符串中找出 needle 字符串出现的第一个位置(下标从 0 开始)。如果不存在,则返回 -1 。
说明:
当 needle 是空字符串时,我们应当返回什么值呢?这是一个在面试中很好的问题。
对于本题而言,当 needle 是空字符串时我们应当返回 0 。这与 C 语言的 strstr() 以及 Java 的 indexOf() 定义相符。
示例 1:
输入:haystack = "hello", needle = "ll"
输出:2
示例 2:
输入:haystack = "aaaaa", needle = "bba"
输出:-1
示例 3:
输入:haystack = "", needle = ""
输出:0
提示:
0 <= haystack.length, needle.length <= 5 * 104
haystack 和 needle 仅由小写英文字符组成
方法和思路
方法1:暴力破解
以让字符串 \textit{needle}needle 与字符串 \textit{haystack}haystack 的所有长度为 mm 的子串均匹配一次,匹配成功,我们返回当前子串的开始位置即可。如果所有子串都匹配失败,则返回 −1。
class Solution {
public int strStr(String haystack, String needle) {
int n = haystack.length(), m = needle.length();
for (int i = 0; i + m <= n; i++) {
boolean flag = true;
for (int j = 0; j < m; j++) {
if (haystack.charAt(i + j) != needle.charAt(j)) {
flag = false;
break;
}
}
if (flag) {
return i;
}
}
return -1;
}
}
复杂度分析
时间复杂度O(n×m),其中 n 是字符串haystack 的长度,m 是字符串needle 的长度。最坏情况下我们需要将字符串needle 与字符串 haystack 的所有长度为 m 的子串均匹配一次。
空间复杂度:O(1)O(1)。我们只需要常数的空间保存若干变量。
方法二:KMP 算法
记字符串 haystack 的长度为 n,字符串needle 的长度为 m。
我们记字符串str=needle+#+haystack,即将字符串needle 和 haystack 进行拼接,并用不存在于两串中的特殊字符 \# 将两串隔开,然后我们对字符串str 求前缀函数。
class Solution {
public int strStr(String haystack, String needle) {
int n = haystack.length(), m = needle.length();
if (m == 0) {
return 0;
}
int[] pi = new int[m];
for (int i = 1, j = 0; i < m; i++) {
while (j > 0 && needle.charAt(i) != needle.charAt(j)) {
j = pi[j - 1];
}
if (needle.charAt(i) == needle.charAt(j)) {
j++;
}
pi[i] = j;
}
for (int i = 0, j = 0; i < n; i++) {
while (j > 0 && haystack.charAt(i) != needle.charAt(j)) {
j = pi[j - 1];
}
if (haystack.charAt(i) == needle.charAt(j)) {
j++;
}
if (j == m) {
return i - m + 1;
}
}
return -1;
}
}
删除链表的节点
请编写一个函数,用于 删除单链表中某个特定节点 。在设计函数时需要注意,你无法访问链表的头节点 head ,只能直接访问 要被删除的节点 。
题目数据保证需要删除的节点 不是末尾节点 。、
说明:
删除链表节点如图:
解释:指定链表中值为 5 的第二个节点,那么在调用了你的函数之后,该链表应变为 4 -> 1 -> 9
示例 1:
输入:head = [4,5,1,9], node = 5
输出:[4,1,9]
示例 2:
输入:head = [4,5,1,9], node = 1
输出:[4,5,9]
示例 3:
输入:head = [1,2,3,4], node = 3
输出:[1,2,4]
示例 4:
输入:head = [0,1], node = 0
输出:[1]
示例 5:
输入:head = [-3,5,-99], node = -3
输出:[5,-99]
代码
java
class Solution {
public void deleteNode(ListNode node) {
//既然不能先删除自己,那就把自己整容成儿子,再假装儿子养活孙子
node.val=node.next.val;
node.next=node.next.next;
}
}
javascript
var deleteNode = function(node) {
node.val = node.next.val;
node.next = node.next.next;
};
除自身以外数组的乘积
给你一个长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积。
示例:
输入: [1,2,3,4]
输出: [24,12,8,6]
提示:题目数据保证数组之中任意元素的全部前缀元素和后缀(甚至是整个数组)的乘积都在 32 位整数范围内。
说明: 请不要使用除法,且在 O(n) 时间复杂度内完成此题。
进阶:
你可以在常数空间复杂度内完成这个题目吗?( 出于对空间复杂度分析的目的,输出数组不被视为额外空间。)
解题方法和思路
方法一:左右乘积列表
我们不必将所有数字的乘积除以给定索引处的数字得到相应的答案,而是利用索引左侧所有数字的乘积和右侧所有数字的乘积(即前缀与后缀)相乘得到答案。
对于给定索引 i,我们将使用它左边所有数字的乘积乘以右边所有数字的乘积。下面让我们更加具体的描述这个算法。
class Solution {
public int[] productExceptSelf(int[] nums) {
int length = nums.length;
// L 和 R 分别表示左右两侧的乘积列表
int[] L = new int[length];
int[] R = new int[length];
int[] answer = new int[length];
// L[i] 为索引 i 左侧所有元素的乘积
// 对于索引为 '0' 的元素,因为左侧没有元素,所以 L[0] = 1
L[0] = 1;
for (int i = 1; i < length; i++) {
L[i] = nums[i - 1] * L[i - 1];
}
// R[i] 为索引 i 右侧所有元素的乘积
// 对于索引为 'length-1' 的元素,因为右侧没有元素,所以 R[length-1] = 1
R[length - 1] = 1;
for (int i = length - 2; i >= 0; i--) {
R[i] = nums[i + 1] * R[i + 1];
}
// 对于索引 i,除 nums[i] 之外其余各元素的乘积就是左侧所有元素的乘积乘以右侧所有元素的乘积
for (int i = 0; i < length; i++) {
answer[i] = L[i] * R[i];
}
return answer;
}
}
方法二:空间复杂度 O(1) 的方法
- 初始化 answer 数组,对于给定索引 i,answer[i] 代表的是 i 左侧所有数字的乘积。
- 构造方式与之前相同,只是我们试图节省空间,先把 answer 作为方法一的 L 数组。
- 这种方法的唯一变化就是我们没有构造 R 数组。而是用一个遍历来跟踪右边元素的乘积。并更新数组 answer[i]=answer[i]∗R。然后 R 更新为R=R∗nums[i],其中变量 RR 表示的就是索引右侧数字的乘积
class Solution {
public int[] productExceptSelf(int[] nums) {
int length = nums.length;
int[] answer = new int[length];
// answer[i] 表示索引 i 左侧所有元素的乘积
// 因为索引为 '0' 的元素左侧没有元素, 所以 answer[0] = 1
answer[0] = 1;
for (int i = 1; i < length; i++) {
answer[i] = nums[i - 1] * answer[i - 1];
}
// R 为右侧所有元素的乘积
// 刚开始右边没有元素,所以 R = 1
int R = 1;
for (int i = length - 1; i >= 0; i--) {
// 对于索引 i,左边的乘积为 answer[i],右边的乘积为 R
answer[i] = answer[i] * R;
// R 需要包含右边所有的乘积,所以计算下一个结果时需要将当前值乘到 R 上
R *= nums[i];
}
return answer;
}
}
引自:初级算法 - LeetBook - 力扣(LeetCode)全球极客挚爱的技术成长平台 (leetcode-cn.com)