深度学习基础(一):图计算理论

本文介绍了深度学习中的图计算理论,包括计算图的概念及其在表示数学公式中的应用。接着讨论了前向微分和反向微分两种微分方法,其中反向微分在Tensorflow和Pytorch等框架中被广泛使用。此外,文章还对比了静态图和动态图的优缺点,强调动态图在调试和编程灵活性方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 图计算理论

计算图是应用图理论表示数学公式的一种方法,由节点和边组成。在计算图中,节点可以式输入值,也可以是一些函数。 边表示这个数据在图中流向的权重值。一般的规则是对从一个节点到另一个节点的所有可能路径求和,将路径每条边上的导数相乘。

对公式 e = ( a + b ) ∗ ( b + 1 ) e=(a+b)*(b+1) e=a+b(b+1),令 c = a + b , d = b + 1 c=a+b,d=b+1 c=a+b,d=b+1,则

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值