深度学习基础
博途慧算
这个作者很懒,什么都没留下…
展开
-
深度学习基础(二):神经网络参数初始化、Batch size和Optimization
1.神经网络初始化 初识化神经网络权重www 1.1固定方差 1)高斯分布 E=0E=0E=0,参数分布符合N(0,σ2)N(0,\sigma^2)N(0,σ2),σ\sigmaσ过小会导致输出神经元过小,经过多层后会慢慢消失,也可能会造成sigmoid函数丢失非线性的能力。 2)均匀分布 1.2基于方差缩放 1)Xavier初始化(Glorot) glorot_uniform,根据每层神经元数量调整参数方差。 self.gru = tf.keras.layers.GRU(self.dec_units,原创 2020-06-13 16:33:44 · 665 阅读 · 0 评论 -
深度学习基础(一):图计算理论
1. 图计算理论 计算图中节点为基本公式,权重为两节点间导数。 对公式e=(a+b)∗(b+1)e=(a+b)*(b+1)e=(a+b)∗(b+1),令c=a+b,d=b+1c=a+b,d=b+1c=a+b,d=b+1,则e=c∗de=c*de=c∗d 因此,∂e∂b=∂e∂c∂c∂b+∂e∂d∂d∂b=2∗1+3∗1=5\frac{\partial e}{\partial b}=\frac{\partial e}{\partial c}\frac{\partial c}{\partial b}+\frac原创 2020-06-10 23:40:25 · 1714 阅读 · 0 评论
分享