Prime Sieve

板子

1. 暴力

public List<Integer> ps(int num){
        ArrayList<Integer> ans = new ArrayList<>();
        if(num<=1){
            return ans;
        }
        outer:for(int i=2;i<=num;i++){
            for(int j=2;j<i;j++){
                if(i%j==0){
                    continue outer;
                }
            }
            ans.add(i);
        }
        return ans;
    }

暴力筛的想法很简单,就是2到i-1每个数看一眼能不能整除,都不能就是素数。

2. 根号

public List<Integer> ps(int num) {
        ArrayList<Integer> ans = new ArrayList<>();
        if(num<=1){
            return ans;
        }
        outer:for(int i=2;i<=num;i++){
            int sqrt = (int) Math.sqrt(i);
            for(int j=2;j<=sqrt;j++){
                if(i%j==0){
                    continue outer;
                }
            }
            ans.add(i);
        }
        return ans;
    }

根号筛的想法稍微多一点,如果一个数能分解成n = p*q,那么p,q一定一个大于等于根号n,另一个小于等于根号n。因此检查到根号n就可以。

3. 埃氏筛

public List<Integer> ps(int num) {
        ArrayList<Integer> ans = new ArrayList<>();
        if(num<=1){
            return ans;
        }
        boolean[] isPrime = new boolean[num+1];
        Arrays.fill(isPrime,false);
        for(int i=2;i<=num;i++){
            // still not marked as a prime
            if(!isPrime[i]){
                ans.add(i);
                // mark k*i,k>=2,k∈N*
                for(int k=2;k*i<=num;k++){
                    isPrime[k*i]=true;
                }
            }
        }
        return ans;
    }

全名埃拉托色尼筛。当一个数确定是素数,那么它的1、2、3、4、5……倍一定都是合数,因此简历标记数组isPrime。每次循环检查标记,若为True那么置入结果列表。同时把他的倍数(直到边界)全部置为False。从数学角度可以证明,埃氏筛的复杂度是O(nloglogn)

4. 欧拉筛

public List<Integer> ps(int num) {
        ArrayList<Integer> ans = new ArrayList<>();
        if(num<=1){
            return ans;
        }
        boolean[] isPrime = new boolean[num+1];
        Arrays.fill(isPrime,false);
        for(int i=2;i<=num;i++){
            if(!isPrime[i]) {
                ans.add(i);
            }
            for (int j = 0; (j < ans.size()) && (ans.get(j) * i <= num); j++) {
                isPrime[ans.get(j) * i] = true;
            }
        }
        return ans;
    }

埃筛的缺点是会有重复标记。比如2,3都是素数。那么2会标记一次6,3也会标记一次6,造成冗余。

欧拉筛在此基础上进一步优化,一个合数必定由多个素数组合而成。那么每次我们用已有素数和当前数组合,标记isPrime,可以使得isPrime中的每个数访问且仅访问一次。时间复杂度O(n)。

1. LC 3326 使数组非递减的最少除法操作次数

VP周赛420 T3。

一开始我给了个写起来简单但是跑起来很慢的解。首先因为结果数组非递减,因此最后那个数就是最大的。因此我们直接倒着开,从倒数第二个数开始往前走。如果当前数比后面一个数大,那么从2开始尝试寻找其最小因数。找到最小因数相当于除以了最大因数(真)。这个范围其实是在[2,nums[i+1]]的,并不用找到根号,这是因为如果你找不到不比后一个数大的因子那么就可以返回-1了。

class Solution:
    def minOperations(self, nums: List[int]) -> int:
        cnt = 0

        for i in range(len(nums)-2,-1,-1):
            if nums[i]>nums[i+1]:
                for j in range(2,nums[i+1]+1):
                    if nums[i]%j==0:
                        nums[i] = j
                        cnt += 1
                        break
            if nums[i]>nums[i+1]:
                return -1

        return cnt

然后这个解法跑了个6100ms,压线过了。后来发现其实可以预处理里面for j那段for loop。我们想找某个数最小因子是谁。不就相当于在欧拉筛里面看是哪个因子把他标记掉的嘛。如果这个数本身是素数,那么令minPrime[x] = -1即可。随后在循环中查询minPrime[nums[i]],如果为-1,或者比nums[i+1]大,那么返回-1,否则计数。

这题如果改成除以一个因子(不一定最大),那就比较难了。

def Euler_Prime_Sieve(mx:int)->List[int]:
    minPrime = [-1 for _ in range(mx+1)]
    primes = []
    is_Prime = [True for _ in range(mx+1)]
    for i in range(2,mx+1):
        if is_Prime[i]:
            primes.append(i)
        for k in primes:
            if i*k > mx:
                break
            is_Prime[i*k] = False
            minPrime[i*k] = k
    return minPrime

mp = Euler_Prime_Sieve(int(1e6))
class Solution:
    def minOperations(self, nums: List[int]) -> int:
        cnt = 0

        for i in range(len(nums)-2,-1,-1):
            if nums[i]>nums[i+1]:
                if mp[nums[i]] == -1 or mp[nums[i]]>nums[i+1]:
                    return -1
                nums[i] = mp[nums[i]]
                cnt += 1

        return cnt

时间复杂度:

  1. 预处理O(k),k为数组最大值
  2. 倒序遍历O(n),查询预处理过了O(1)

总体O(n+k)。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值