由数据范围反推算法复杂度以及算法内容

文章转载自:链接:https://www.acwing.com/blog/content/32/
一般ACM或者笔试题的时间限制是1秒或2秒。
在这种情况下,C++代码中的操作次数控制在 107∼108107∼108 为最佳。

下面给出在不同数据范围下,代码的时间复杂度和算法该如何选择:

  1. n ≤ 30 , n≤30, n30, 指数级别, dfs+剪枝,状态压缩dp
  2. n ≤ 100 = > O ( n 3 ) , n≤100 => O(n3), n100=>O(n3)floyd,dp,高斯消元
  3. n ≤ 1000 = > O ( n 2 ) , O ( n 2 l o g n ) , n≤1000 => O(n2),O(n2logn), n1000=>O(n2)O(n2logn)dp,二分,朴素版Dijkstra、朴素版Prim、Bellman-Ford
  4. n ≤ 10000 = > O ( n ∗ √ n ) , n≤10000 => O(n∗√n), n10000=>O(nn)块状链表、分块、莫队
  5. n ≤ 100000 = > O ( n l o g n ) n≤100000 => O(nlogn) n100000=>O(nlogn) 各种sort,线段树、树状数组、set/map、heap、拓扑排序、dijkstra+heap、prim+heap、Kruskal、spfa、求凸包、求半平面交、二分、CDQ分治、整体二分、后缀数组、树链剖分、动态树
  6. n ≤ 1000000 = > O ( n ) n≤1000000 => O(n) n1000000=>O(n), 以及常数较小的 O(nlogn)O(nlogn) 算法 => 单调队列、 hash、双指针扫描、并查集,kmp、AC自动机,常数比较小的 O(nlogn)O(nlogn) 的做法:sort、树状数组、heap、dijkstra、spfa
  7. n ≤ 10000000 = > O ( n ) n≤10000000 => O(n) n10000000=>O(n),双指针扫描、kmp、AC自动机、线性筛素数
  8. n ≤ 1 0 9 = > O ( √ n ) n≤10^9 => O(√n) n109=>O(n),判断质数
  9. n ≤ 1 0 18 = > O ( l o g n ) n≤10^{18} => O(logn) n1018=>O(logn),最大公约数,快速幂,数位DP
  10. n ≤ 1 0 1000 = > O ( ( l o g n ) 2 ) n≤10^{1000} => O((logn)^2) n101000=>O((logn)2),高精度加减乘除
  11. n ≤ 1 0 100000 = > O ( l o g k × l o g l o g k ) n≤10^{100000} => O(logk×loglogk) n10100000=>O(logk×loglogk),k表示位数O(logk×loglogk),k表示位数,高精度加减、FFT/NTT
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值