【线性代数(11)】极大线性无关组、向量组的秩


手动反爬虫: 原博地址

 知识梳理不易,请尊重劳动成果,文章仅发布在CSDN网站上,在其他网站看到该博文均属于未经作者授权的恶意爬取信息

如若转载,请标明出处,谢谢!

1 极大线性无关组

如下,四个向量构成的向量组,其实经过简化后可以直接使用两个向量进行表示
( 1 0 ) ( 2 0 ) ( 0 10 ) ( 0 5 ) ⇒ ( 1 0 ) ( 0 5 ) \left(\begin{matrix} 1\\0\end{matrix}\right) \left(\begin{matrix} 2\\0\end{matrix}\right)\left(\begin{matrix} 0\\10\end{matrix}\right) \left(\begin{matrix} 0\\5\end{matrix}\right) \Rightarrow \left(\begin{matrix} 1\\0\end{matrix}\right)\left(\begin{matrix} 0\\5\end{matrix}\right) (10)(20)(010)(05)(10)(05)极大线性无关组: α 1 , α 2 , α 3 , α 4 , α 5 \alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4},\alpha_{5} α1,α2,α3,α4,α5的部分组 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2满足
1) α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2线性无关
2)每个向量均可由 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2表示
则称 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2是这个向量组的极大无关组(这里的极大是指:找无关的向量组的向量个数最大),比如上面的示例可以选择是 ( 1 0 ) ( 0 5 ) \left(\begin{matrix} 1\\0\end{matrix}\right)\left(\begin{matrix} 0\\5\end{matrix}\right) (10)(05)也可以是 ( 2 0 ) ( 0 5 ) \left(\begin{matrix} 2\\0\end{matrix}\right)\left(\begin{matrix} 0\\5\end{matrix}\right) (20)(05),故极大无关组不是唯一的,但是任意两个极大无关组中向量的个数是相同的

2 向量组的秩

定义:极大线性无关组含向量的个数,记作 r ( α 1 , α 2 , . . . , α s ) r(\alpha_{1},\alpha_{2},...,\alpha_{s}) r(α1,α2,...,αs)
回故一下矩阵的秩:非零子式的最高阶数

1) 0 < = r ( α 1 , α 2 , . . . , α s ) < = s 0<=r(\alpha_{1},\alpha_{2},...,\alpha_{s})<=s 0<=r(α1,α2,...,αs)<=s

比如下面向量组,根据上述结论,可知极大无关组的个数在0-5之间,但是实际上根据上一节里面的结论:n+1个n维向量组必定线性相关,所以 0 < = r ( α 1 , α 2 , . . . , α s ) < = m i n { 向 量 的 个 数 , 向 量 的 维 数 } 0<=r(\alpha_{1},\alpha_{2},...,\alpha_{s})<=min\{向量的个数,向量的维数\} 0<=r(α1,α2,...,αs)<=min{,}
( 1 1 2 ) ( 1 1 0 ) ( 1 2 2 ) ( 1 8 9 ) ( 3 4 5 ) \left(\begin{matrix} 1\\1\\2\end{matrix}\right) \left(\begin{matrix} 1\\1\\0\end{matrix}\right)\left(\begin{matrix} 1\\2\\2\end{matrix}\right) \left(\begin{matrix} 1\\8\\9\end{matrix}\right) \left(\begin{matrix} 3\\4\\5\end{matrix}\right) 1121101221893452) α 1 , α 2 , . . . , α s \alpha_{1},\alpha_{2},...,\alpha_{s} α1,α2,...,αs线性无关    ⟺    r = s \iff r =s r=s
3) α 1 , α 2 , . . . , α s \alpha_{1},\alpha_{2},...,\alpha_{s} α1,α2,...,αs线性相关    ⟺    r < s \iff r <s r<s

定理: α 1 , α 2 , . . . , α s \alpha_{1},\alpha_{2},...,\alpha_{s} α1,α2,...,αs可由 β 1 , β 2 , . . . , β t \beta_{1},\beta_{2},...,\beta_{t} β1,β2,...,βt表示,则 r ( α 1 , α 2 , . . . , α s ) < = r ( β 1 , β 2 , . . . , β t ) r(\alpha_{1},\alpha_{2},...,\alpha_{s}) <= r(\beta_{1},\beta_{2},...,\beta_{t}) r(α1,α2,...,αs)<=r(β1,β2,...,βt)
注意:等价的向量组有相同的秩,但是有相同秩的向量组不一定等价

行秩与列秩
比如
A = ( 1 1 1 1 1 3 0 2 1 1 5 6 9 1 0 0 1 1 ) A = \left(\begin{matrix} 1&1&1&1&1&3\\0&2&1&1&5&6\\9&1&0&0&1&1\end{matrix}\right) A=109121110110151361这个向量可以分作行向量组 α 1 = ( 1 , 1 , 1 , 1 , 1 , 3 ) , α 2 = ( 0 , 2 , 1 , 1 , 5 , 6 ) , α 3 = ( 9 , 1 , 0 , 0 , 1 , 1 ) \alpha_{1} = (1,1,1,1,1,3),\alpha_{2}=(0,2,1,1,5,6),\alpha_{3} = (9,1,0,0,1,1) α1=(1,1,1,1,1,3),α2=(0,2,1,1,5,6),α3=(9,1,0,0,1,1)与列向量组 β 1 , β 2 , β 3 , β 4 , β 5 , β 6 \beta_{1},\beta_{2},\beta_{3},\beta_{4},\beta_{5},\beta_{6} β1,β2,β3,β4,β5,β6

结论:行秩 = 列秩 = 矩阵的秩 r ( A ) r(A) r(A)

就是利用上面的式子,直接求解矩阵的秩就可以得到行秩和列秩的值

B = ( 3 3 3 2 − 1 5 − 5 3 − 13 4 − 3 11 ) ⇒ ( 1 1 1 0 − 3 3 0 0 0 0 0 0 ) B = \left(\begin{matrix} 3&3&3\\2&-1&5\\-5&3&-13\\4&-3&11\end{matrix}\right) \Rightarrow \left(\begin{matrix} 1&1&1\\0&-3&3\\0&0&0\\0&0&0\end{matrix}\right) B=32543133351311100013001300

3 极大线性无关组的求解

定理:初等行变换不改变矩阵列向量的线性关系
( 1 0 5 0 1 3 0 0 0 ) ⇒ ( 1 0 5 0 1 3 1 1 8 ) \left(\begin{matrix} 1&0&5\\0&1&3\\0&0&0\end{matrix}\right)\Rightarrow \left(\begin{matrix} 1&0&5\\0&1&3\\1&1&8\end{matrix}\right) 100010530101011538比如将第一行和第二行都加到第三行上面去,将向量拆解成向量组进行表示,左侧为 α 1 = ( 1 , 0 , 0 ) , α 2 = ( 0 , 1 , 0 ) , α 3 = ( 5 , 3 , 0 ) \alpha_{1} = (1,0,0),\alpha_{2}=(0,1,0),\alpha_{3} = (5,3,0) α1=(1,0,0),α2=(0,1,0),α3=(5,3,0) ,其中 α 1 , α 2 \alpha_{1},\alpha_{2} α1,α2线性无关的, α 3 = 5 α 1 + 3 α 2 \alpha_{3} = 5\alpha_{1}+3\alpha_{2} α3=5α1+3α2。可以发现对于右侧的向量也可以拆解成向量组的形式表示, β 1 = ( 1 , 0 , 1 ) , β 2 = ( 0 , 1 , 1 ) , β 3 = ( 5 , 3 , 8 ) \beta_{1} = (1,0,1),\beta_{2}=(0,1,1),\beta_{3} = (5,3,8) β1=(1,0,1),β2=(0,1,1),β3=(5,3,8),显然 β 1 , β 2 \beta_{1},\beta_{2} β1,β2是线性无关的,而且 β 3 = 5 β 1 + 3 β 2 \beta_{3} = 5\beta_{1}+3\beta_{2} β3=5β1+3β2,也就证明了定理。

例题,若 α 1 = ( 1 , − 2 , 2 , − 1 ) , α 2 = ( 2 , − 4 , 8 , 0 ) , α 3 = ( − 2 , 4 , − 2 , 3 ) , α 4 = ( 3 , − 6 , 0 , − 6 ) \alpha_{1} = (1,-2,2,-1),\alpha_{2}=(2,-4,8,0),\alpha_{3} = (-2,4,-2,3),\alpha_{4} = (3,-6,0,-6) α1=(1,2,2,1),α2=(2,4,8,0),α3=(2,4,2,3),α4=(3,6,0,6),求解向量组的极大线性无关组

基本步骤:

  • 1)不管向量是行或者列,均按照列构成矩阵
  • 2)只用初等行变换,化为行简化阶梯型
  • 3)首非零元所在列做极大无关组
  • 4)其余向量表示系数,直接写出来即可

解:首先按照前两个步骤完成下列的操作,还是以左侧为 α \alpha α,右侧为 β \beta β,发现 β 1 , β 2 \beta_{1},\beta_{2} β1,β2线性无关,按照第三步就是直接作为极大无关组, β 3 , β 4 \beta_{3},\beta_{4} β3,β4直接忽略最后的含0行后数值直接作系数读出来,比如 β 3 = − 3 β 1 + 1 2 β 2 , β 4 = 6 β 1 − 3 2 β 2 \beta_{3} = -3\beta_{1}+\frac{1}{2}\beta_{2},\beta_{4} = 6\beta_{1}-\frac{3}{2}\beta_{2} β3=3β1+21β2,β4=6β123β2
( 1 2 − 2 3 − 2 − 4 4 − 6 2 8 − 2 0 − 1 0 3 − 6 ) ⇒ ( 1 0 − 3 6 0 1 1 2 − 3 2 0 0 0 0 0 0 0 0 ) \left(\begin{matrix} 1&2&-2&3\\-2&-4&4&-6\\2&8&-2&0\\-1&0&3&-6\end{matrix}\right) \Rightarrow \left(\begin{matrix} 1&0&-3&6\\0&1&\frac{1}{2}&-\frac{3}{2}\\0&0&0&0\\0&0&0&0\end{matrix}\right) 1221248024233606100001003210062300最后按照刚刚梳理的定理:初等行变换不改变矩阵列向量的线性关系,故对于 β \beta β适应的线性关系,对于 α \alpha α同样适用,所以原向量组的极大线性无关组为 α 1 , α 2 , α 3 = − 3 α 1 + 1 2 α 2 , α 4 = 6 α 1 − 3 2 α 2 \alpha_{1},\alpha_{2}, \alpha_{3} = -3\alpha_{1}+\frac{1}{2}\alpha_{2},\alpha_{4} = 6\alpha_{1}-\frac{3}{2}\alpha_{2} α1,α2,α3=3α1+21α2,α4=6α123α2

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:撸撸猫 设计师:马嘣嘣 返回首页
评论

打赏作者

百木从森

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值