Python 数据可视化:WordCloud 词云的构建

本文介绍了Python的WordCloud库,用于创建词云。通过安装wordcloud、jieba、matplotlib等库,可以进行词云的生成。词云是文本数据中高频词汇的视觉呈现,有助于快速理解文本主要内容。WordCloud的生成过程包括分词、计算词频、布局生成、着色等步骤。此外,文章还列举了WordCloud类的关键参数,如字体路径、尺寸、遮罩和颜色设置等,以帮助调整词云效果。
摘要由CSDN通过智能技术生成


WordCloud 官方文档:https://amueller.github.io/word_cloud/index.html
WordCloud GitHub 地址:https://github.com/amueller/word_cloud
Python非常重要的一个可视化库,wordcloud词云库了解一下!:https://www.bilibili.com/video/av26266917
一个免费的生成词云(word cloud)的在线工具:https://segmentfault.com/a/1190000016827687
python词云 wordcloud 入门 :https://blog.csdn.net/tanzuozhev/article/details/50789226
Python第三方库wordcloud(词云)快速入门与进阶:https://blog.csdn.net/qq_34337272/article/details/79552929

词云可视化:安装模块 wordcloud: pip install wordcloud

  • 什么是词云

词云又叫文字云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。

  • 准备工作:

python开发环境、wordcloud、jieba、matplotlib、numpy 、PIL 等库文件安装好。

安装完成以后 ( 命令行使用方式 ) wordcloud_cli --text in.txt --imagefile out.png --mask in.png
        text 是词云来源,mask 是背景框架 ,imagefile 输出的文件
        wordcloud_cli --help 查看所有支持的命令参数

wordcloud生成词云的原理简介 

        wordcloud生成词云的原理其实并不复杂,大体分成5步(具体可自行查看源码):

  • 1.wordcloud制作词云时,首先要对对文本数据进行分词,使用process_text()方法,这一步的主要任务是去除停用词 
  • 2.第二步是计算每个词在文本中出现的频率,生成一个哈希表。词频用于确定一个词的重要性 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值