数据结构与算法——最小生成树

本文深入探讨了图的最小生成树问题,包括普里姆算法、克鲁斯卡算法和Boruvka算法。普里姆算法从一个顶点开始,逐步添加最短边直到连接所有顶点;Kruskal算法按边的权重排序,连接不同子树的最小边;Boruvka算法每次合并最小边,减少子树数量。这些算法各有优劣,适用于不同的场景。
摘要由CSDN通过智能技术生成

640?wx_fmt=jpeg

1 引言

在之前的文章中已经详细介绍了图的一些基础操作。而在实际生活中的许多问题都是通过转化为图的这类数据结构来求解的,这就涉及到了许多图的算法研究。

例如:在 n 个城市之间铺设光缆,以保证这 n 个城市中的任意两个城市之间都可以通信。由于铺设光缆的价格很高,且各个城市之间的距离不同,这就使得在各个城市之间铺设光缆的价格不同。那么如何选择铺设线路的方案,才能使费用最低呢?

这就涉及到我们今天要研究的图的最小生成树问题

2 重要概念

在学习最小生成树之前需要先明确几个重要概念。连通图:在无向图中,若任意两个顶点与都有路径相通,则称该无向图为连通图。强连通图:在有向图中,若任意两个顶点与都有路径相通,则称该有向图为强连通图。连通网:在连通图中,若图的边具有一定的意义,每一条边都对应着一个数,称为权;权代表着连接连个顶点的代价,称这种连通图叫做连通网。生成树:一个连通图的生成树是指一个连通子图,它含有图中全部n个顶点,但只有足以构成一棵树的n-1条边。一颗有n个顶点的生成树有且仅有n-1条边,如果生成树中再添加一条边,则必定成环。最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树。

3 普里姆算法—Prim算法

  普里姆算法(Prim算法)是加权连通图里生成最小生成树的一种算法。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

3.1 算法流程

  (1)对于一个加权连通图,其顶点集合为V,边集合为E。从集合V中任选一个顶点作为初始顶点,将该顶点标为已处理;
  (2)已处理的所有顶点可以看成是一个集合U,计算所有与集合U中相邻接的顶点的距离,选择距离最短的顶点,将其标记为已处理,并记录最短距离的边;
  (3)不断计算已处理的顶点集合U和未处理的顶点的距离,每次选出距离最短的顶点标为已处理,同时记录最短距离的边,直至所有顶点都处理完。
  (4)最终,所有记录的最短距离的边构成的树,即是最小生成树。

3.2 算法图解

例如:图3.2.1所示的带权无向图,采用Prim算法构建最小生成树过程如下。

640?wx_fmt=png
图3.2.1

(1)首先,选取顶点A作为起始点,标记A,并将顶点A添加至集合U中。

(2)集合U中只有一个顶点A,与A邻接的顶点有B和C,B、C距A的距离分别为6、3。选择距离最短的边(A,C),将C标记,并将C添加至集合U中。

(3)集合U中顶点为A和C。与顶点A邻接的有B、C,对应距离为6、3。与C邻接的顶点有B、F、E,对应的距离为4、7、8。由于顶点A、C均被标记,故不能选择距离为3的路径。此时应选择距离最短边(C,B)。标记B、并将B添加至集合U中。

(4)集合U新加入顶点B。与顶点B邻接顶点有A、C、D、F。A、C已经在集合内,不能再被选取。顶点B到顶点D、F的距离分别为2、3。顶点C到顶点E、F距离分别为7、8。因此选择距离最短边(B,D),将D标记,并将D添加至集合U中。

(5)集合U中顶点有A、B、C、D。顶点A无可选顶点。顶点B可选顶点有F,距离为3。顶点C可选顶点有E、F,对应距离分别为8、7。顶点D可选顶点为F,对应距离为6。因此选取距离最短的边(B,F),标记F,并将F添加至集合U中。

(6)集合U中顶点有A、B、C、D、F。顶点A、B、D均无可选顶点。顶点C可选顶点为E,对应距离为8。顶点F可选顶点为E,对应距离为7。选取距离最短的边(F,E),标记E,将E添加至集合U中。

(7)集合U中顶点有A、B、C、D、E、F,但是均没有可选顶点,树的生成过程结束。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值