6.33③ 假定用两个一维数组L[1..n]和R[1..n]作为
有n个结点的二叉树的存储结构, L[i]和R[i]分别指
示结点i的左孩子和右孩子,0表示空。试写一个算法
判别结点u是否为结点v的子孙。
要求实现以下函数:
Status Dencendant(Array1D L,Array1D R,intn,int u,int v);
一维数组类型Array1D的定义:
typedef int Array1D[MAXSIZE];
Status Dencendant(Array1D L,Array1D R,intn,int u,int v)
{if(L[v]==u||R[v]==u) return TRUE;
if(L[v])
if(Dencendant(L,R,n,u,L[v])) return TRUE;
if(R[v])
if( Dencendant(L,R,n,u,R[v]) )return TRUE;
else return FALSE;
}
6.34③ 假定用两个一维数组L[1..n]和R[1..n]作为
有n个结点的二叉树的存储结构, L[i]和R[i]分别指
示结点i的左孩子和右孩子,0表示空。试写一个算法,
先由L和R建立一维数组T[1..n],使T中第i(i=1,2,...,
n)个分量指示结点i的双亲,然后判别结点u是否为结
点v的子孙。
要求实现以下函数:
Status Dencend(Array1D L, Array1D R, int n,int u, int v, Array1D T);
一维数组类型Array1D的定义:
typedef int Array1D[MAXSIZE];
Status Dencend(Array1D L, Array1D R, int n,int u, int v, Array1D T)
{int i;
for( i = 1; i <= n; ++i )
T[L[i]] = i;
for( i = 1; i <= n; ++i )
T[R[i]] = i;
while(T[u]!=0)
{
if(T[u]==v)
return TRUE;
u=T[u];
}
return FALSE;
}
6.36③ 若已知两棵二叉树B1和B2皆为空,或者皆
不空且B1的左、右子树和B2的左、右子树分别相似,
则称二叉树B1和B2相似。试编写算法,判别给定两
棵二叉树是否相似。
要求实现下列函数:
Status Similar(BiTree t1, BiTree t2);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
Status Similar(BiTree t1, BiTree t2)
{ if(!t1&&!t2) return TRUE;
if(t1&&t2)
if(Similar(t1->lchild,t2->lchild))
if(Similar(t1->rchild,t2->rchild)) return TRUE;
else return FALSE;
}
6.37③试直接利用栈的基本操作写出先序遍历的非递归
形式的算法(提示:不必按3.3.2节介绍的从递归到非递归
的方法而直接写出非递归算法)。
要求实现下列函数:
void PreOrder(BiTree bt, void(*visit)(TElemType));
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild,*rchild;
} BiTNode, *BiTree;
可用栈类型Stack的相关定义:
typedef BiTree SElemType; // 栈的元素类型
Status InitStack(Stack &S);
Status StackEmpty(Stack S);
Status Push(Stack &S, SElemType e);
Status Pop(Stack &S, SElemType &e);
Status GetTop(Stack S, SElemType &e);
void PreOrder(BiTree bt, void(*visit)(TElemType))
{ Stack S;
InitStack(S);
BiTree p;
if(!bt) return ;
p=bt;
while(p||!StackEmpty(S))
{if(p)
{visit(p->data);
Push(S,p);
p=p->lchild;}
else
{Pop(S,p);
p=p->rchild;
}
}
}
6.38④同6.37题条件,写出后序遍历的非递归算法
(提示:为分辨后序遍历时两次进栈的不同返回点,
需在指针进栈时同时将一个标志进栈)。
要求实现下列函数:
void PostOrder(BiTree bt, void(*visit)(TElemType));
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild,*rchild;
} BiTNode, *BiTree;
可用栈类型Stack的相关定义:
typedef struct {
BiTNode *ptr; // 二叉树结点的指针类型
int tag; // 0..1
} SElemType; // 栈的元素类型
Status InitStack(Stack &S);
Status StackEmpty(Stack S);
Status Push(Stack &S, SElemType e);
Status Pop(Stack &S, SElemType &e);
Status GetTop(Stack S, SElemType &e);
void PostOrder(BiTree bt, void(*visit)(TElemType))
{Stack S;
InitStack(S);
SElemType p,pt;
p.ptr=bt;
pt.ptr=bt;
p.tag=1;
if(!p.ptr) return;
Push(S,p);
while(!p.tag||!StackEmpty(S))
{
while(p.ptr)
{
while(p.ptr=p.ptr->lchild) {p.tag=0;Push(S,p);}
GetTop(S,p);
if(p.ptr=p.ptr->rchild){p.tag=1;Push(S,p);}
}
Pop(S,p);
visit(p.ptr->data);
pt=p;
Pop(S,p);
while(pt.tag||!p.ptr->rchild)
{visit(p.ptr->data);
pt=p;
if(!StackEmpty(S))Pop(S,p);
else return;
}
if(!pt.tag)
{Push(S,p);
p.ptr=p.ptr->rchild;
p.tag=1;
Push(S,p);
}
}
}
6.41③编写递归算法,在二叉树中求位于先序序列中
第k个位置的结点的值。
要求实现下列函数:
TElemType PreOrder(BiTree bt, int k);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
TElemType PreOrder(BiTree bt, int k)
{int i=0,count=0; //i为循环变量、count为记录根结点的左子树的结点个数
TElemType T; //定义一个返回值变量T
BiTree a[20],b; //a[20]记录左子树的根结点,b为一个中间变量
if(k <=0||!bt) return '#'; //当k为0或者bt空时,没有找到结点,返回'#'
if(k==1) return bt->data; //当k从给定的数减到1时,表示找到,返回bt->data
T=PreOrder(bt->lchild,k-1); //左子树递归
if(T!='#') //当找到T时,返回T
return(T);
b=bt->lchild; //没有找到,继续找
while(b||i) //下面是计算左子树有多少个结点的算法,并记录在count中
{
if(b) //当左子树非空时,
{
a[i]=b; //记录第i个结点在a[i]中,用来计算本结点的右子树用的
i++; //计算下一个结点的序号
b=b->lchild; //对下一个结点操作
count++; //记录结点数
}
else
{
i--; //如果b空,表示执行到最左的叶子,现在要找到上一个结点的右子树
b=a[i]; //把上一个结点赋给b
b=b->rchild; //使b指向右子树
}
}
T=PreOrder(bt->rchild,k-count-1); //递归右子树,并返回k-count-1,表示要找的结点可能在右子树的第k-count-1的位置
if(T!='#') //对T判断,当T不为'#'时,表示找到,返回T
return (T);
else //否则返回 '#'表示没有找到
return '#';
}
6.42③编写递归算法,计算二叉树中叶子结点的数目。
要求实现下列函数:
void Leaves(BiTree bt, int &x);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
void Leaves(BiTree bt, int &x)
{ if(!bt) x=0;
elseif(!bt->lchild&&!bt->rchild)
x+=1;
else
{if(bt->lchild) Leaves(bt->lchild,x);
if(bt->rchild) Leaves(bt->rchild,x);
}
}
6.43③ 编写递归算法,将二叉树中所有结点的
左、右子树相互交换。
要求实现下列函数:
void Exchange(BiTree &bt);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
void Exchange(BiTree &bt)
{ BiTree b;
if(!bt)
return;
else
{
Exchange(bt->lchild);
Exchange(bt->rchild);
b=bt->rchild;
bt->rchild=bt->lchild;
bt->lchild=b;
}
}
6.44④ 编写递归算法:求二叉树中以元素值
为x的结点为根的子树的深度。
要求实现下列函数:
int Depthx(BiTree T, TElemType x);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
int Depthx(BiTree T, TElemType x)
{ if(T)
if(T->data==x)
if(Depthx(T->lchild,T->lchild->data)>Depthx(T->rchild,T->rchild->data))
returnDepthx(T->lchild,T->lchild->data)+1;
else
returnDepthx(T->rchild,T->rchild->data)+1;
else
{ if(Depthx(T->lchild,x))
return Depthx(T->lchild,x);
else
return Depthx(T->rchild,x);
}
else return 0;
}
6.46③ 编写复制一棵二叉树的非递归算法。
要求实现下列函数:
void CopyBiTree(BiTree T, BiTree &TT);
二叉链表类型定义:
typedef char TElemType; // 设二叉树的元素为char类型
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
可用队列类型Queue的相关定义:
typedef BiTree QElemType; // 设队列元素为二叉树的指针类型
Status InitQueue(Queue &Q);
Status EnQueue(Queue &Q, QElemType e);
Status DeQueue(Queue &Q, QElemType&e);
Status GetHead(Queue Q, QElemType &e);
Status QueueEmpty(Queue Q);
void CopyBiTree(BiTree T, BiTree &TT)
{ Queue Q1,Q2;
BiTNode *p,*q;
InitQueue(Q1);InitQueue(Q2);
if(T){
EnQueue(Q1,T);
TT=(BiTNode*)malloc(sizeof(BiTNode));
EnQueue(Q2,TT);
while(!QueueEmpty(Q1))
{
DeQueue(Q1,p);
DeQueue(Q2,q);
q->data=p->data;
if(p->lchild)
{q->lchild=(BiTNode*)malloc(sizeof(BiTNode));
EnQueue(Q1,p->lchild);
EnQueue(Q2,q->lchild);
}
if(p->rchild)
{q->rchild=(BiTNode*)malloc(sizeof(BiTNode));
EnQueue(Q1,p->rchild);
EnQueue(Q2,q->rchild);
}
}
}
}
6.47④编写按层次顺序(同一层自左至右)遍历二叉树的算法。
要求实现下列函数:
void LevelOrder(BiTree bt, char *ss);
二叉链表类型定义:
typedef char TElemType; // 设二叉树的元素为char类型
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
可用队列类型Queue的相关定义:
typedef BiTree QElemType; // 设队列元素为二叉树的指针类型
Status InitQueue(Queue &Q);
Status EnQueue(Queue &Q, QElemType e);
Status DeQueue(Queue &Q, QElemType&e);
Status GetHead(Queue Q, QElemType &e);
Status QueueEmpty(Queue Q);
提示:可将遍历元素的值(字符)依次置入ss,并最后以'\0'结尾。
也可以用下列字符串函数产生ss:
int sprintf(char *buffer, char *format [,argument, ...]);
char *strcat(char *dest, char *src);
void LevelOrder(BiTree bt, char *ss)
{Queue Q;
BiTNode *t;
char *s=ss;
InitQueue(Q);
if(bt){
EnQueue(Q,bt);
while(!QueueEmpty(Q))
{
DeQueue(Q,t);
*s++=t->data;
if(t->lchild)
EnQueue(Q,t->lchild);
if(t->rchild)
EnQueue(Q,t->rchild);
}
}
*s='\0';
}
void LevelOrder(BiTree bt, char *ss)
{Queue Q;
BiTNode *t;
char *s=ss;
InitQueue(Q);
if(bt){
EnQueue(Q,bt);
while(!QueueEmpty(Q))
{
DeQueue(Q,t);
*s++=t->data;
if(t->lchild)
EnQueue(Q,t->lchild);
if(t->rchild)
EnQueue(Q,t->rchild);
}
}
*s='\0';
}
6.49④编写算法判别给定二叉树是否为完全二叉树。
要求实现下列函数:
Status CompleteBiTree(BiTree bt);
二叉链表类型定义:
typedef struct BiTNode {
TElemType data;
BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
可用队列类型Queue的相关定义:
typedef BiTree QElemType; // 设队列元素为二叉树的指针类型
Status InitQueue(Queue &Q);
Status EnQueue(Queue &Q, QElemType e);
Status DeQueue(Queue &Q, QElemType&e);
Status GetHead(Queue Q, QElemType &e);
Status QueueEmpty(Queue Q);
Status CompleteBiTree(BiTree bt)
{Queue Q;
InitQueue(Q);
BiTree t;
int flag=1;
if(!bt) return TRUE;
EnQueue(Q,bt);
while(!QueueEmpty(Q))
{ DeQueue(Q,t);
if(flag&&t->lchild)EnQueue(Q,t->lchild);
else if(!t->lchild) flag=0;
else return FALSE;
if(flag&&t->rchild)EnQueue(Q,t->rchild);
else if(!t->rchild);
else return FALSE;
}
return TRUE;
}
6.65④ 已知一棵二叉树的前序序列和中序序列分别
存于两个一维数组中,试编写算法建立该二叉树的二
叉链表。
要求实现以下函数:
void BuildBiTree(BiTree &bt, int ps,char *pre,
int is, char *ino,int n);
二叉链表类型定义:
typedef char TElemType;
typedef struct BiTNode {
TElemType data;
BiTNode*lchild, *rchild;
} BiTNode, *BiTree;
void BuildBiTree(BiTree &bt, int ps,char *pre,
int is, char *ino,int n)
{ int i,L,R;
if( !n )
{
bt = NULL;
return ;
}
bt = ( BiTree )malloc( sizeof( BiTNode ) );
bt->data = pre[ps];
for( i = is; ino[i] != pre[ps]; i++ );
L= i - is;
R= n-L-1;
if( L )
BuildBiTree( bt->lchild, ps+1, pre, is, ino, L );
if( R )
BuildBiTree( bt->rchild,ps+L+1,pre, i+1, ino, R );
}
数据结构课后设计题第七章
7.22③试基于图的深度优先搜索策略写一算法,
判别以邻接表方式存储的有向图中是否存在由顶
点vi到顶点vj的路径(i≠j)。 注意:算法中涉及
的图的基本操作必须在此存储结构上实现。
实现下列函数:
Status DfsReachable(ALGraph g, int i, intj);
图的邻接表以及相关类型和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
typedef char VertexType;
typedef struct ArcNode {
int adjvex;
struct ArcNode *nextarc;
} ArcNode;
typedef struct VNode {
VertexType data;
ArcNode *firstarc;
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices;
int vexnum, arcnum;
} ALGraph;
Status DfsReachable(ALGraph g, int i, intj)
{if( !g.vexnum || !g.arcnum )return FALSE;
Queue Q;
InitQueue( Q );
EnQueue( Q, i );
int u;
while( ! QueueEmpty ( Q ) )
{
DeQueue( Q, u );
visited[u] = 1;
ArcNode *p;
int k;
for( p = g.vertices[u].firstarc; p; p = p->nextarc )
{
k = p->adjvex;
if( k == j ) return OK;
if( !visited[k] ) EnQueue( Q, k );
}
}
return FALSE;
}
7.23③同7.22题要求。试基于图的广度优先搜索策略写一算法。
实现下列函数:
Status BfsReachable(ALGraph g, int i, intj);
图的邻接表以及相关类型和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
typedef char VertexType;
typedef struct ArcNode {
int adjvex;
struct ArcNode *nextarc;
} ArcNode;
typedef struct VNode {
VertexType data;
ArcNode *firstarc;
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices;
int vexnum, arcnum;
} ALGraph;
Status InitQueue(Queue &q);
Status EnQueue(Queue &q, int e);
Status DeQueue(Queue &q, int &e);
Status QueueEmpty(Queue q);
Status GetFront(Queue q, int &e);
Status BfsReachable(ALGraph g, int i, intj)
{ if( !g.vexnum || !g.arcnum ) return FALSE;
Queue Q;
InitQueue( Q );
EnQueue( Q, i );
int u;
while( ! QueueEmpty ( Q ) )
{
DeQueue( Q, u );
visited[u] = 1;
ArcNode *p;
int k;
for( p = g.vertices[u].firstarc; p; p = p->nextarc )
{
k = p->adjvex;
if( k == j ) return OK;
if( !visited[k] ) EnQueue( Q,k );
}
}
return FALSE;
}
7.24③ 试利用栈的基本操作编写,按深度优先搜索策略
遍历一个强连通图的非递归形式的算法。算法中不规定具
体的存储结构,而将图Graph看成是一种抽象的数据类型。
实现下列函数:
void Traverse(Graph dig, VertexType v0,void(*visit)(VertexType));
图以及相关类型、函数和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
int LocateVex(Graph g, VertexType v);
VertexType GetVex(Graph g, int i);
int FirstAdjVex(Graph g, int v);
int NextAdjVex(Graph g, int v, int w);
void visit(char v);
Status InitStack(SStack &s);
Status Push(SStack &s, SElemType x);
Status Pop(SStack &s, SElemType&x);
Status StackEmpty(SStack s);
Status GetTop(SStack s, SElemType &e);
void Traverse(Graph dig, VertexType v0, void (*visit)(VertexType))
{int i,v,flag; //flag来记录某点还有没有邻接点
SStack s;
VertexType p;
InitStack( s );
if( dig.vexnum && dig.arcnum )
{
i = LocateVex( dig, v0 );
visited[i] = TRUE;
visit( v0 );
Push( s, v0 );
while( ! StackEmpty( s ) )
{
GetTop( s, p );
v=LocateVex( dig, p );
flag = 0;
for( i = FirstAdjVex( dig, v ); i >= 0; i = NextAdjVex( dig, v, i ) )
{
if( ! visited[i] )
{
p = GetVex(dig,i);
flag = 1;
break;
}
}
if( flag )
{
visit( p );
visited[i] = TRUE;
Push( s, p );
}
else
Pop( s, p );
}
}
}
7.27④ 采用邻接表存储结构,编写一个判别无向图中任意给定的
两个顶点之间是否存在一条长度为k的简单路径的算法。
实现下列函数:
Status SinglePath(ALGraph g, VertexType sv,VertexType tv,
int k, char *sp);
图的邻接表以及相关类型、函数和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
typedef char StrARR[100][MAX_VERTEX_NUM+1];
typedef char VertexType;
typedef struct ArcNode {
int adjvex;
struct ArcNode *nextarc;
} ArcNode;
typedef struct VNode {
VertexType data;
ArcNode *firstarc;
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices;
int vexnum, arcnum;
} ALGraph;
int LocateVex(Graph g, VertexType v);
void inpath(char *&path, VertexType v);
void depath(char *&path, VertexType v);
Status SinglePath(ALGraph g, VertexType sv,VertexType tv, int k, char *sp)
{int i,j,l;
ArcNode *p;
if( sv == tv && !k )
{
inpath( sp, tv );
return OK;
}
else
{
i = LocateVex(g,sv);
visited[i] = 1;
inpath( sp, sv );
for( p = g.vertices[i].firstarc; p; p = p->nextarc )
{
l = p->adjvex;
if( !visited[l] )
{
if( SinglePath ( g,g.vertices[l].data, tv, k-1, sp ) )
return OK;
else
depath( sp,g.vertices[l].data );
}
}
visited[i]=0;
}
}
7.28⑤ 已知有向图和图中两个顶点u和v,试编写算法求
有向图中从u到v的所有简单路径。
实现下列函数:
void AllPath(ALGraph g, VertexType sv,VertexType tv,
StrARR &path, int &i);
图的邻接表以及相关类型、函数和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
typedef char StrARR[100][MAX_VERTEX_NUM+1];
typedef char VertexType;
typedef struct ArcNode {
int adjvex;
struct ArcNode *nextarc;
} ArcNode;
typedef struct VNode {
VertexType data;
ArcNode *firstarc;
} VNode, AdjList[MAX_VERTEX_NUM];
typedef struct {
AdjList vertices;
int vexnum, arcnum;
} ALGraph;
int LocateVex(Graph g, VertexType v);
void inpath(char *path, VertexType v);
void depath(char *path, VertexType v);
void Copy(char* s,char* d,int length)
{
int i;
for(i=0;i<length;i++) d[i] = s[i];
d[i] = '\0';
}
int Find(ALGraph g, int s, int t,char*tempPath,int current,int start,StrARR &path,int &c_path)
{
ArcNode *arc = g.vertices[s].firstarc;
if(arc == NULL) return 0;
while(arc != NULL)
{
if(visited[arc->adjvex] == FALSE)
{
visited[arc->adjvex] = TRUE;
inpath(tempPath,g.vertices[arc->adjvex].data);
if(arc->adjvex == t)
{
Copy(tempPath,path[c_path++],current+1);
}
else
{
Find(g,arc->adjvex,t,tempPath,current+1,start,path,c_path);
}
if(arc->adjvex != start)
{
depath(tempPath,g.vertices[arc->adjvex].data);
visited[arc->adjvex] =FALSE;
}
}
arc = arc->nextarc;
}
return 0;
}
void AllPath(ALGraph g, VertexType sv,VertexType tv,
StrARR &path, int &i)
{
int s = LocateVex(g,sv);
int t = LocateVex(g,tv);
char* tempPath = NULL;
tempPath = (char*)malloc(20);
inpath(tempPath,sv);
visited[s] = TRUE;
Find(g,s,t,tempPath,1,s,path,i);
}
7.29⑤ 试写一个算法,在以邻接矩阵方式存储的
有向图G中求顶点i到顶点j的不含回路的、长度为k
的路径数。
实现下列函数:
int SimplePath(MGraph G, int i, int j, intk);
图的邻接矩阵存储结构的类型定义如下:
typedef enum {DG,DN,AG,AN} GraphKind; // 有向图,有向网,无向图,无向网
typedef struct {
VRType adj; // 顶点关系类型。对无权图,用1(是)或0(否)表示相邻否;
// 对带权图,则为权值类型
InfoType *info; // 该弧相关信息的指针(可无)
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef struct {
AdjMatrix arcs; // 邻接矩阵
VertexType vexs[MAX_VERTEX_NUM]; // 顶点向量
int vexnum,arcnum; // 图的当前顶点数和弧数
GraphKind kind; // 图的种类标志
}MGraph;
int SimplePath(MGraph G, int i, int j, intk)
{int sum = 0,v;
if( G.arcs[i][j].adj && k == 1 && ! visited[j] )
sum = 1;
else
if( k > 1 )
{
visited[i] = 1;
for( v = 0; v < G.vexnum; v++ )
{
if( G.arcs[i][v].adj &&! visited[v] )
sum += SimplePath( G, v,j, k-1 );
}
visited[i] = 0;
}
return sum;
}
7.31③试完成求有向图的强连通分量的算法,并分析算法的时间复杂度。
实现下列函数:
void StronglyConnected(OLGraph dig, StrARR&scc, int &n);
图的十字链表以及相关类型和辅助变量定义如下:
Status visited[MAX_VERTEX_NUM];
int finished[MAX_VERTEX_NUM];
typedef charStrARR[MAX_VERTEX_NUM][MAX_VERTEX_NUM+1]; // 记录各强连通分量
typedef struct ArcBox {
int tailvex,headvex;
struct ArcBox *hlink,*tlink;
} ArcBox;
typedef struct VexNode {
VertexType data;
ArcBox *firstin,*firstout;
} VexNode;
typedef struct {
VexNode xlist[MAX_VERTEX_NUM];
int vexnum, arcnum;
} OLGraph;
void DFS1(OLGraph dig,int nVex,int&count)
{
if(visited[nVex] == TRUE) return;
visited[nVex] = TRUE;
ArcBox *p = dig.xlist[nVex].firstout;
while(p!=NULL)
{
DFS1(dig,p->headvex,count);
p = p->tlink;
}
finished[++count] = nVex;
return;
}
void DFS2(OLGraph dig,int nVex,StrARR&scc,int k,int& j)
{
if(visited[nVex] == TRUE) return;
visited[nVex] = TRUE;
scc[k][j++] = dig.xlist[nVex].data;
ArcBox *p = dig.xlist[nVex].firstin;
while(p!=NULL)
{
DFS2(dig,p->tailvex,scc,k,j);
p = p->hlink;
}
return;
}
void StronglyConnected(OLGraph dig, StrARR&scc, int &n)
{
if(dig.vexnum <= 0) return;
int count = 0;
int i;
for(i=0;i<dig.vexnum;i++)
{
DFS1(dig,i,count);
}
for(i=0;i<dig.vexnum;i++)
visited[i] = FALSE;
int k=0;
int j=0;
for(i=count;i>0;i--)
{
if(visited[finished[i]] == FALSE)
{
DFS2(dig,finished[i],scc,k,j);
scc[k][j] = '\0';
k++;
j=0;
}
}
n=k;
}
数据结构课后设计题第九章
9.26② 试将折半查找算法改写成递归算法。
实现下列函数:
int BinSearch(SSTable s, int low, int high,KeyType k);
静态查找表的类型SSTable定义如下:
typedef struct {
KeyType key;
... ... // 其他数据域
} ElemType;
typedef struct {
ElemType *elem;
int length;
} SSTable;
int BinSearch(SSTable s, int low, int high,KeyType k)
{int mid;
if(low<=high)
{
mid=(low+high)/2;
if(s.elem[mid].key==k) return mid;
if(s.elem[mid].key<k)
return BinSearch(s,mid+1,high,k);
if(s.elem[mid].key>k)
return BinSearch(s,low,high-1,k);
}
return 0;
}
9.31④ 试写一个判别给定二叉树是否为二叉排序树
的算法,设此二叉树以二叉链表作存储结构。且树中
结点的关键字均不同。
实现下列函数:
Status IsBSTree(BiTree t);
二叉树的类型BiTree定义如下:
typedef struct {
KeyType key;
... ... // 其他数据域
} ElemType;
typedef struct BiTNode {
ElemType data;
BiTNode *lchild,*rchild;
}BiTNode, *BiTree;
Status IsBSTree(BiTree t)
{ if( t )//&& ! ( t->lchild ||t->rchild ) )//空树和叶子不用判断
{
if( t->lchild && ( t->data.key <t->lchild->data.key ) )//左孩子不空,左孩子的key比本身的大
return FALSE;
else if( t->rchild && ( t->data.key >t->rchild->data.key ) )//右孩子不空,右孩子的key比本身的大
return FALSE;
else if( !IsBSTree( t->lchild ) )//判断左子树
return FALSE;
else if( !IsBSTree( t->rchild ) )//判断右子树
return FALSE;
}
return TRUE;
}
9.33③编写递归算法,从大到小输出给定二叉排序树
中所有关键字不小于x的数据元素。要求你的算法的时
间复杂度为O(log2n+m),其中n为排序树中所含结点数,
m为输出的关键字个数。
实现下列函数:
void OrderOut(BiTree t, KeyType x,void(*visit)(TElemType));
二叉树的类型BiTree定义如下:
typedef struct {
KeyType key;
... ... // 其他数据域
} ElemType;
typedef struct BiTNode {
ElemType data;
BiTNode *lchild,*rchild;
}BiTNode, *BiTree;
void OrderOut(BiTree t, KeyType x,void(*visit)(TElemType))
{if(t->rchild) OrderOut(t->rchild,x,visit);
if(t->data.key>=x)
visit(t->data);
if(t->lchild)OrderOut(t->lchild,x,visit);
}
9.44④已知某哈希表的装载因子小于1,哈希函数
H(key)为关键字(标识符)的第一个字母在字母表中
的序号,处理冲突的方法为线性探测开放定址法。
试编写一个按第一个字母的顺序输出哈希表中所有
关键字的算法。
实现下列函数:
void PrintKeys(HashTable ht,void(*print)(StrKeyType));
哈希表的类型HashTable定义如下:
#define SUCCESS 1
#define UNSUCCESS 0
#define DUPLICATE -1
typedef char StrKeyType[4];
typedef struct {
StrKeyType key;
void *any;
} HElemType;
int hashsize[] = { 7,11,17,23,29,37,47 };
typedef struct {
HElemType elem[MAXLEN];
int count;
int sizeindex;
} HashTable;
void PrintKeys(HashTable ht,void(*print)(StrKeyType))
{int index,i;
char ch;
for(i=0; i<26; i++)
{
index = i%hashsize[ht.sizeindex];//index从0开始
ch = ht.elem[index].key[0];
while(ch>='A' && ch<='Z')//若不为空值
{
if(ht.elem[index].key[0]==('A'+i))
(*print)(ht.elem[index].key);
index = (++index)%hashsize[ht.sizeindex];
ch = ht.elem[index].key[0];
}
}
}
9.45③ 假设哈希表长为m,哈希函数为H(x),用链地址法
处理冲突。试编写输入一组关键字并建造哈希表的算法。
实现下列函数:
int BuildHashTab(ChainHashTab &H, intn, HKeyType es[]);
哈希表的类型ChainHashTab定义如下:
#define NUM 7
#define NULLKEY -1
#define SUCCESS 1
#define UNSUCCESS 0
#define DUPLICATE -1
typedef char HKeyType;
typedef struct HNode {
HKeyType data;
struct HNode* next;
}*HLink;
typedef struct {
HLink *elem; // 指针存储基址,动态分配数组
int count; // 当前表中含有的记录个数
int cursize; // 哈希表的当前容量
}ChainHashTab; // 链地址哈希表
int Hash(ChainHashTab H, HKeyType k) {
// 哈希函数
return k % H.cursize;
}
Status Collision(ChainHashTab H, HLink&p) {
// 求得下一个探查地址p
if(p && p->next) {
p= p->next;
return SUCCESS;
}else return UNSUCCESS;
}
int BuildHashTab(ChainHashTab &H, intn, HKeyType es[])
{
int i = 0,l,flag;
HLink p,node;
while( es[i] )
{
l = Hash( H, es[i] );
node = ( HLink )malloc( sizeof( HNode ) );
node->data = es[i];
node->next = NULL;
i++;
if( !H.elem[l] )
H.elem[l] = node;
else
{
flag = 0;
p = H.elem[l];
if( p->data == node->data )
flag = 1;
while( Collision( H, p ) )
if( p->data ==node->data )
{
flag = 1;
break;
}
if( !flag )
{
p = H.elem[l];
node->next = p;
H.elem[l] = node;
}
}
}
}
数据结构课后设计题第十章
10.23② 试以L.r[k+1]作为监视哨改写教材10.2.1节
中给出的直接插入排序算法。其中,L.r[1..k]为待排
序记录且k<MAXSIZE。
实现下列函数:
void InsertSort(SqList &L);
顺序表的类型SqList定义如下:
typedef struct {
KeyType key;
...
} RedType;
typedef struct {
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length;
} SqList;
void InsertSort(SqList &L)
{ int i,j,k;
for(i=2; i<=L.length; i++)
{
L.r[0] = L.r[i];
int j;
for(j=i-1; j>0; j--)
if(L.r[i].key>=L.r[j].key)
break;
for(k=i-1; k>=j+1; k--)
L.r[k+1] = L.r[k];
L.r[j+1] = L.r[0];
}
}
10.26② 如下所述改写教科书1.4.3节中的起泡排序算法:
将算法中用以起控制作用的布尔变量change改为一个整型变
量,指示每一趟排序中进行交换的最后一个记录的位置,并
以它作为下一趟起泡排序循环终止的控制值。
实现下列函数:
void BubbleSort(SqList &L);
顺序表的类型SqList定义如下:
typedef struct {
KeyType key;
...
} RedType;
typedef struct {
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length;
} SqList;
比较函数和交换函数:
Status LT(RedType a, RedType b); // 比较函数:"<"
Status GT(RedType a, RedType b); // 比较函数:">"
void Swap(RedType &a, RedType &b);// 交换函数
void BubbleSort(SqList &L)
{int i, j, change = 1;
for( i = L.length; i > 1; i = change )
for( change = 1, j = 1; j < i; j++ )
if( GT( L.r[j], L.r[j+1] ) )
{
Swap(L.r[j],L.r[j+1]);
change = j;
}
}
10.32⑤荷兰国旗问题:设有一个仅由红、白、兰
这三种颜色的条块组成的条块序列。请编写一个时
间复杂度为O(n)的算法,使得这些条块按红、白、
兰的顺序排好,即排成荷兰国旗图案。
实现下列函数:
void HFlag(FlagList &f)
"荷兰国旗"的顺序表的类型FlagList定义如下:
#define red '0'
#define white '1'
#define blue '2'
typedef char ColorType;
typedef struct {
ColorType r[MAX_LENGTH+1];
int length;
} FlagList;
void HFlag(FlagList &f)
{int i = 1, j =1, k = f.length;
while( j <= k )
switch( f.r[j] )
{
case red:
swap( f.r[i++], f.r[j++] );
break;
case white:
j++;
break;
case blue:
swap( f.r[j], f.r[k] );
k--;
}
}
10.34③已知(k1,k2,...,kp)是堆,则可以写一个时
间复杂度为O(log(n))的算法将(k1,k2,...,kp,kp+1)
调整为堆。试编写"从p=1起,逐个插入建堆"的算法,
并讨论由此方法建堆的时间复杂度。
实现下列函数:
void CreateHeap(HeapType &h, char *s);
堆(顺序表)的类型HeapType定义如下:
typedef char KeyType;
typedef struct {
KeyType key;
... ...
} RedType;
typedef struct {
RedType r[MAXSIZE+1];
int length;
} SqList, HeapType;
void CreateHeap(HeapType &h, char *s)
{int j,k,i;
i= -1;
while( s[++i] )
{
h.r[i+1].key = s[i];
h.length++;
}
for( i = 2; i <= h.length; i++ )
{
j = i;
while( j != 1 ) //把H.r[i]插入
{
k = j / 2;
if( LT(h.r[j], h.r[k] ) )
swap( h.r[j], h.r[k] );
j = k;
}
}
}
10.42④序列的"中值记录"指的是:如果将此序列排序
后,它是第n/2个记录。试写一个求中值记录的算法。
实现下列函数:
KeyType MidElement(SqList &L);
顺序表的类型SqList定义如下:
typedef struct {
KeyType key;
...
} RedType;
typedef struct {
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length;
} SqList;
KeyType MidElement(SqList &L)
{int i,j,k;
intmid=(1+L.length)/2;
k=L.length;
if(k==0) return '#';
for(i=k-1;i>=1;i--)
if(L.r[i].key>L.r[i+1].key)
{L.r[k+1]=L.r[i];
L.r[i]=L.r[i+1];
for(j=i+1;L.r[k+1].key>L.r[j].key;++j) L.r[j-1]=L.r[j];
L.r[j-1]=L.r[k+1];
}
return L.r[mid].key;
}
10.43③已知记录序列a[1..n] 中的关键字各不相同,
可按如下所述实现计数排序:另设数组c[1..n],对每
个记录a[i], 统计序列中关键字比它小的记录个数存
于c[i], 则c[i]=0的记录必为关键字最小的记录,然
后依c[i]值的大小对a中记录进行重新排列,试编写算
法实现上述排序方法。
实现下列函数:
void CountSort(SqList &L);
顺序表的类型SqList定义如下:
typedef struct {
KeyType key;
...
} RedType;
typedef struct {
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length;
} SqList;
void CountSort(SqList &L)
{
int i, j, count, min, t;
int c[50];
for( i = 1;i <= L.length; i++ )
{
for( j = 1, count = 0; j <= L.length; j++ )
if( LT(L.r[j], L.r[i] ) )
count++;
c[i] = count;
}
for( i = 1;i <= L.length; i++ )
{
min = i;
for( j = i+1;j <= L.length; j++ )
if( c[j]<c[min] )
min = j;
Swap( L.r[i], L.r[min] );
t = c[i];
c[i] = c[min];
c[min] = t;
}
}