目录
-
大模型(LLMs)基础面
-
- 1. 目前 主流的开源模型体系 有哪些?
- 2. prefix LM 和 causal LM 区别是什么?
- 3. 涌现能力是啥原因?
- 4. 大模型LLM的架构介绍?
-
大模型(LLMs)进阶面
-
- 1. llama 输入句子长度理论上可以无限长吗?
- 1. 什么是 LLMs 复读机问题?
- 2. 为什么会出现 LLMs 复读机问题?
- 3. 如何缓解 LLMs 复读机问题?
- 1. LLMs 复读机问题
- 2. llama 系列问题
- 3. 什么情况用Bert模型,什么情况用LLaMA、ChatGLM类大模型,咋选?
- 4. 各个专业领域是否需要各自的大模型来服务?
- 5. 如何让大模型处理更长的文本?
-
大模型(LLMs)微调面
-
- 1. 如果想要在某个模型基础上做全参数微调,究竟需要多少显存?
- 2. 为什么SFT之后感觉LLM傻了?
- 3. SFT 指令微调数据 如何构建?
- 4. 领域模型Continue PreTrain 数据选取?
- 5. 领域数据训练后,通用能力往往会有所下降,如何缓解模型遗忘通用能力?
- 6. 领域模型Continue PreTrain ,如何 让模型在预训练过程中就学习到更多的知识?
- 7. 进行SFT操作的时候,基座模型选用Chat还是Base?
- 8. 领域模型微调 指令&数据输入格式 要求?
- 9. 领域模型微调 领域评测集 构建?
- 10. 领域模型词表扩增是不是有必要的?
- 11. 如何训练自己的大模型?
- 12. 训练中文大模型有啥经验?
- 13. 指令微调的好处?
- 14. 预训练和微调哪个阶段注入知识的?
- 15. 想让模型学习某个领域或行业的知识,是应该预训练还是应该微调?
- 16. 多轮对话任务如何微调模型?
- 17. 微调后的模型出现能力劣化,灾难性遗忘是怎么回事?
- 18. 微调模型需要多大显存?
- 19. 大模型LLM进行SFT操作的时候在学习什么?
- 20. 预训练和SFT操作有什么不同
- 21. 样本量规模增大,训练出现OOM错
- 22. 大模型LLM进行SFT 如何对样本进行优化?
- 23. 模型参数迭代实验
-
大模型(LLMs)langchain面
-
- 1. 基于LLM+向量库的文档对话 基础面
- 2. 基于LLM+向量库的文档对话 优化面
- 3. 基于LLM+向量库的文档对话 工程示例面
- 1. LLMs 存在模型幻觉问题,请问如何处理?
- 2. 基于LLM+向量库的文档对话 思路是怎么样?
- 3. 基于LLM+向量库的文档对话 核心技术是什么?
- 4. 基于LLM+向量库的文档对话 prompt 模板 如何构建?
- 1. 痛点1:文档切分粒度不好把控,既担心噪声太多又担心语义信息丢失
- 2. 痛点2:在基于垂直领域 表现不佳
- 3. 痛点3:langchain 内置 问答分句效果不佳问题
- 4. 痛点4:如何 尽可能召回与query相关的Document 问题
- 5. 痛点5:如何让LLM基于query和context得到高质量的response
- 1. 避坑记录
- 2. 本地知识库问答系统(Langchain-chatGLM)
- 1. 什么是 LangChain?
- 2. LangChain 包含哪些 核心概念?
- 3. 什么是 LangChain Agent?
- 4. 如何使用 LangChain ?
- 5. LangChain 支持哪些功能?
- 6. 什么是 LangChain model?
- 7. LangChain 包含哪些特点?
- 8. LangChain 如何使用?
- 9. LangChain 存在哪些问题及方法方案?
- 10. LangChain 替代方案?
- 1. LangChain 中 Components and Chains 是什么?
- 2. LangChain 中 Prompt Templates and Values 是什么?
- 3. LangChain 中 Example Selectors 是什么?
- 4. LangChain 中 Output Parsers 是什么?
- 5. LangChain 中 Indexes and Retrievers 是什么?
- 6. LangChain 中 Chat Message History 是什么?
- 7. LangChain 中 Agents and Toolkits 是什么?
- 1. LangChain 如何调用 LLMs 生成回复?
- 2. LangChain 如何修改 提示模板?
- 3. LangChain 如何链接多个组件处理一个特定的下游任务?
- 4. LangChain 如何Embedding & vector store?
- 1. LangChain 低效的令牌使用问题
- 2. LangChain 文档的问题
- 3. LangChain 太多概念容易混淆,过多的“辅助”函数问题
- 4. LangChain 行为不一致并且隐藏细节问题
- 5. LangChain 缺乏标准的可互操作数据类型问题
- 大模型(LLMs)langchain 面
- 基于LLM+向量库的文档对话 经验面
-
大模型(LLMs)参数高效微调(PEFT) 面
-
- 一、LoRA篇
- 二、QLoRA篇
- 三、AdaLoRA篇
- 四、LoRA权重是否可以合入原模型?
- 五、ChatGLM-6B LoRA后的权重多大?
- 六、LoRA 微调优点是什么?
- 七、LoRA微调方法为啥能加速训练?
- 八、如何在已有LoRA模型上继续训练?
- 1.1 什么是 LoRA?
- 1.2 LoRA 的思路是什么?
- 1.3 LoRA 的特点是什么?
- 2.1 QLoRA 的思路是怎么样的?
- 2.2 QLoRA 的特点是什么?
- 3.1 AdaLoRA 的思路是怎么样的?
- 一、为什么需要 提示学习(Prompting)?
- 二、什么是 提示学习(Prompting)?
- 三、提示学习(Prompting) 有什么优点?
- 四、提示学习(Prompting)有哪些方法,能不能稍微介绍一下它们间?
- 4.4.1 为什么需要 P-tuning v2?
- 4.4.2 P-tuning v2 思路是什么?
- 4.4.3 P-tuning v2 优点是什么?
- 4.4.4 P-tuning v2 缺点是什么?
- 4.3.1 为什么需要 P-tuning?
- 4.3.2 P-tuning 思路是什么?
- 4.3.3 P-tuning 优点是什么?
- 4.3.4 P-tuning 缺点是什么?
- 4.2.1 为什么需要 指示微调(Prompt-tuning)?
- 4.2.2 指示微调(Prompt-tuning)思路是什么?
- 4.2.3 指示微调(Prompt-tuning)优点是什么?
- 4.2.4 指示微调(Prompt-tuning)缺点是什么?
- 4.2.5 指示微调(Prompt-tuning)与 Prefix-tuning 区别 是什么?
- 4.2.6 指示微调(Prompt-tuning)与 fine-tuning 区别 是什么?
- 4.1.1 为什么需要 前缀微调(Prefix-tuning)?
- 4.1.2 前缀微调(Prefix-tuning)思路是什么?
- 4.1.3 前缀微调(Prefix-tuning)的优点是什么?
- 4.1.4 前缀微调(Prefix-tuning)的缺点是什么?
- 4.1 前缀微调(Prefix-tuning)篇
- 4.2 指示微调(Prompt-tuning)篇
- 4.3 P-tuning 篇
- 4.4 P-tuning v2 篇
- 一、为什么 需要 适配器微调(Adapter-tuning)?
- 二、适配器微调(Adapter-tuning)思路?
- 三、 适配器微调(Adapter-tuning)特点是什么?
- 四、AdapterFusion 思路 是什么?
- 五、AdapterDrop 思路 是什么?
- 六、AdapterDrop 特点 是什么?
- 七、MAM Adapter 思路 是什么?
- 八、MAM Adapter 特点 是什么?
- 微调方法是啥?如何微调?
- 为什么需要 PEFT?
- 介绍一下 PEFT?
- PEFT 有什么优点?
- 微调方法批处理大小模式GPU显存速度?
- Peft 和 全量微调区别?
- 多种不同的高效微调方法对比
- 当前高效微调技术存在的一些问题
- 高效微调技术最佳实践
- PEFT 存在问题?
- 能不能总结一下各种参数高效微调方法?
- 大模型(LLMs)参数高效微调(PEFT) 面
- 适配器微调(Adapter-tuning)篇
- 提示学习(Prompting)
- LoRA 系列篇
-
大模型(LLMs)推理面
-
- 1. 为什么大模型推理时显存涨的那么多还一直占着?
- 2. 大模型在gpu和cpu上推理速度如何?
- 3. 推理速度上,int8和fp16比起来怎么样?
- 4. 大模型有推理能力吗?
- 5. 大模型生成时的参数怎么设置?
- 6. 有哪些省内存的大语言模型训练/微调/推理方法?
- 7. 如何让大模型输出合规化
- 8. 应用模式变更
-
大模型(LLMs)评测面
-
- 大模型怎么评测?
- 大模型的honest原则是如何实现的?
- 模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?
-
大模型(LLMs)强化学习面
-
- 奖励模型需要和基础模型一致吗?
- RLHF 在实践过程中存在哪些不足?
- 如何解决 人工产生的偏好数据集成本较高,很难量产问题?
- 如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?
- 如何解决 PPO 的训练过程同时存在4个模型(2训练,2推理),对计算资源的要求较高 问题?
-
大模型(LLMs)软硬件配置面
-
大模型(LLMs)训练集面
-
- SFT(有监督微调)的数据集格式?
- RM(奖励模型)的数据格式?
- PPO(强化学习)的数据格式?
- 找数据集哪里找?
- 微调需要多少条数据?
- 有哪些大模型的训练集?
- 进行领域大模型预训练应用哪些数据集比较好?
-
大模型(LLMs)显存问题面
-
大模型(LLMs)分布式训练面
-
大模型(LLMs)agent 面
-
- 如何给LLM注入领域知识?
- 如果想要快速体验各种模型,该怎么办?
-
Token及模型参数准备篇
-
- 预训练数据 Token 重复 是否影响 模型性能?
- SFT需要训练Token数?
-
LLMs 位置编码篇
-
- 6.1 ALiBi (Attention with Linear Biases) 思路是什么?
- 6.2 ALiBi (Attention with Linear Biases) 的偏置矩阵是什么?有什么作用?
- 6.3 ALiBi (Attention with Linear Biases) 有什么优点?
- 6.4 ALiBi (Attention with Linear Biases) 被哪些 LLMs 应用?
- 5.1 什么是 长度外推问题?
- 5.2 长度外推问题 的 解决方法 有哪些?
- 4.1 旋转位置编码 RoPE 思路是什么?
- 4.2 推导一下 旋转位置编码 RoPE ?
- 4.3 旋转位置编码 RoPE 有什么优点?
- 4.4 旋转位置编码 RoPE 被哪些 LLMs 应用?
- 1 什么是位置编码?
- 2 什么是绝对位置编码?
- 3 什么是相对位置编码?
- 4 旋转位置编码 RoPE篇
- 5 长度外推问题篇
- 6 ALiBi (Attention with Linear Biases)篇
-
LLMs Tokenizer 篇
-
- Byte-Pair Encoding(BPE)篇
- WordPiece 篇
- SentencePiece 篇
- 对比篇
- 1 Byte-Pair Encoding(BPE) 如何构建词典?
- 1 WordPiece 与 BPE 异同点是什么?
- 简单介绍一下 SentencePiece 思路?
- 1 举例 介绍一下 不同 大模型LLMs 的分词方式?
- 2 介绍一下 不同 大模型LLMs 的分词方式 的区别?
- LLMs Tokenizer 篇
-
Layer Normalization 篇
-
- LLMs 各模型分别用了 哪种 Layer normalization?
- 1 LN 在 LLMs 中的不同位置 有什么区别么?如果有,能介绍一下区别么?
- Layer Norm 篇
- RMS Norm 篇 (均方根 Norm)
- Deep Norm 篇
- Deep Norm 有什么优点?
- Layer Norm 的计算公式写一下?
- RMS Norm 的计算公式写一下?
- RMS Norm 相比于 Layer Norm 有什么特点?
- Deep Norm 思路?
- 写一下 Deep Norm 代码实现?
- Layer normalization-方法篇
- Layer normalization-位置篇
- Layer normalization 对比篇
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
答案
-
基础面
1 目前 主流的开源模型体系 有哪些?
-
- 1 介绍一下 FFN 块 计算公式?
- 2 介绍一下 GeLU 计算公式?
- 3 介绍一下 Swish 计算公式?
- 4 介绍一下 使用 GLU 线性门控单元的 FFN 块 计算公式?
- 5 介绍一下 使用 GeLU 的 GLU 块 计算公式?
- 6 介绍一下 使用 Swish 的 GLU 块 计算公式?
- 各LLMs 都使用哪种激活函数?
目前主流的开源LLM(语言模型)模型体系包括以下几个:
- GPT(Generative Pre-trained Transformer)系列:由OpenAI发布的一系列基于Transformer架构的语言模型,包括GPT、GPT-2、GPT-3等。GPT模型通过在大规模无标签文本上进行预训练,然后在特定任务上进行微调,具有很强的生成能力和语言理解能力。
- BERT(Bidirectional Encoder Representations from Transformers):由Google发布的一种基于Transformer架构的双向预训练语言模型。BERT模型通过在大规模无标签文本上进行预训练,然后在下游任务上进行微调,具有强大的语言理解能力和表征能力。
- XLNet:由CMU和Google Brain发布的一种基于Transformer架构的自回归预训练语言模型。XLNet模型通过自回归方式预训练,可以建模全局依赖关系,具有更好的语言建模能力和生成能力。
- RoBERTa:由Facebook发布的一种基于Transformer架构的预训练语言模型。RoBERTa模型在BERT的基础上进行了改进,通过更大规模的数据和更长的训练时间,取得了更好的性能。
- T5(Text-to-Text Transfer Transformer):由Google发布的一种基于Transformer架构的多任务预训练语言模型。T5模型通过在大规模数据集上进行预训练,可以用于多种自然语言处理任务,如文本分类、机器翻译、问答等。
这些模型在自然语言处理领域取得了显著的成果,并被广泛应用于各种任务和应用中。
2 prefix LM 和 causal LM 区别是什么?
Prefix LM(前缀语言模型)和Causal LM(因果语言模型)是两种不同类型的语言模型,它们的区别在于生成文本的方式和训练目标。
- Prefix LM:前缀语言模型是一种生成模型,它在生成每个词时都可以考虑之前的上下文信息。在生成时,前缀语言模型会根据给定的前缀(即部分文本序列)预测下一个可能的词。这种模型可以用于文本生成、机器翻译等任务。
- Causal LM:因果语言模型是一种自回归模型,它只能根据之前的文本生成后续的文本,而不能根据后续的文本生成之前的文本。在训练时,因果语言模型的目标是预测下一个词的概率,给定之前的所有词作为上下文。这种模型可以用于文本生成、语言建模等任务。
总结来说,前缀语言模型可以根据给定的前缀生成后续的文本,而因果语言模型只能根据之前的文本生成后续的文本。它们的训练目标和生成方式略有不同,适用于不同的任务和应用场景。
3 涌现能力是啥原因?
大模型的涌现能力主要是由以下几个原因造成的:
- 数据量的增加:随着互联网的发展和数字化信息的爆炸增长,可用于训练模型的数据量大大增加。更多的数据可以提供更丰富、更广泛的语言知识和语境,使得模型能够更好地理解和生成文本。
- 计算能力的提升:随着计算硬件的发展,特别是图形处理器(GPU)和专用的AI芯片(如TPU)的出现,计算能力大幅提升。这使得训练更大、更复杂的模型成为可能,从而提高了模型的性能和涌现能力。
- 模型架构的改进:近年来,一些新的模型架构被引入,如Transformer,它在处理序列数据上表现出色。这些新的架构通过引入自注意力机制等技术,使得模型能够更好地捕捉长距离的依赖关系和语言结构,提高了模型的表达能力和生成能力。
- 预训练和微调的方法:预训练和微调是一种有效的训练策略,可以在大规模无标签数据上进行预训练,然后在特定任务上进行微调。这种方法可以使模型从大规模数据中学习到更丰富的语言知识和语义理解,从而提高模型的涌现能力。
综上所述,大模型的涌现能力是由数据量的增加、计算能力的提升、模型架构的改进以及预训练和微调等因素共同作用的结果。这些因素的进步使得大模型能够更好地理解和生成文本,为自然语言处理领域带来了显著的进展。
4 大模型LLM的架构介绍?
LLM(Large Language Model,大型语言模型)是指基于大规模数据和参数量的语言模型。具体的架构可以有多种选择,以下是一种常见的大模型LLM的架构介绍:
- Transformer架构:大模型LLM常使用Transformer架构,它是一种基于自注意力机制的序列模型。Transformer架构由多个编码器层和解码器层组成,每个层都包含多头自注意力机制和前馈神经网络。这种架构可以捕捉长距离的依赖关系和语言结构,适用于处理大规模语言数据。
- 自注意力机制(Self-Attention):自注意力机制是Transformer架构的核心组件之一。它允许模型在生成每个词时,根据输入序列中的其他词来计算该词的表示。自注意力机制能够动态地为每个词分配不同的权重,从而更好地捕捉上下文信息。
- 多头注意力(Multi-Head Attention):多头注意力是自注意力机制的一种扩展形式。它将自注意力机制应用多次,每次使用不同的权重矩阵进行计算,得到多个注意力头。多头注意力可以提供更丰富的上下文表示,增强模型的表达能力。
- 前馈神经网络(Feed-Forward Network):在Transformer架构中,每个注意力层后面都有一个前馈神经网络。前馈神经网络由两个全连接层组成,通过非线性激活函数(如ReLU)进行变换。它可以对注意力层输出的表示进行进一步的映射和调整。
- 预训练和微调:大模型LLM通常采用预训练和微调的方法进行训练。预训练阶段使用大规模无标签数据,通过自监督学习等方法进行训练,使模型学习到丰富的语言知识。微调阶段使用有标签的特定任务数据,如文本生成、机器翻译等,通过有监督学习进行模型的微调和优化。
需要注意的是,大模型LLM的具体架构可能会因不同的研究和应用而有所不同。上述介绍的是一种常见的架构,但实际应用中可能会有一些变体或改进。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓