《Hadoop权威指南》之hadoop的架构

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/lyzx_in_csdn/article/details/79497626

废话不多说直接看图

一、hadoop的架构

    1>从物理架构来看一个叫Master的机器管理者3台叫slaveX的节点

    2>从逻辑的角度来看

        a:HDFS 一个NameNode节点管理着3台DataNode节点

        b:Yarn 一个ResourceManager管理者3台NodeManager

二、各个角色的作用

    NameNode:(接受用户的读写请求)

        1、存储元数据(owership、permissions、文件包含那些块)
    >>block保存在哪个dataNNode上在启动时由DataNode上报其位置信息即这些信息一致在内存中
    >>元数据metadata持久化到一个叫fsimage的文件中
    >>edits文件记录对metadata的操作日志
    >>当删除一个文件不会立即去修改fsimage文件而是等一段时间在合并这两个文件的操作
        2、数据在内存中(也会在磁盘上持久化一份)

        3、存储文件、block、datanode上的映射关系

DataNode:

     1、存储文件的实际数据
2、文件存储在磁盘上
3、维护了blockId到本地文件的映射关系

     定时向namenode发送心跳同时也实时上报本节点上的数据(有可能会阻塞namenode节点)

SecondaryNameNode
不是Namenode的备份但是可以做其备份,主要是帮NameNode合并edits日志以减少Namenode启动的时间
就是说当有频繁的操作时,并不是实时的取修改fsimage文件而是记录在edits日志中
间隔一定的时间或者当edits日志大小到一定的值时由SecondaryNameNode去根据edits日志修改fsimage文件

一个数据块被划分为多个block如果不够128M就按照128M存储(逻辑上),实际是文件多大就按照多大存储

 

展开阅读全文

没有更多推荐了,返回首页