机器学习 TOP 10 必读论文

Medium上的机器学习深度爱好者必关注的账号Mybridge照例对11月发表的学术论文进行了排名,整理出了10篇必读论文,建议收藏深读。

1、 Alpha Zero:用强化学习算法对中国象棋和国际象棋进行自我修炼(本论文作者包括DeepMind创始人Demis Hassabis)

https://arxiv.org/pdf/1712.01815.pdf

2、 高分辨率图像合成和有条件的GANs的语义处理(该论文由UC Berkeley的Ming-Yu Liu以及NVIDIA Research撰写)

https://arxiv.org/abs/1711.11585v1

[外链图片转存失败(img-pxeO9MRb-1564894969765)(https://cdn-images-1.medium.com/max/1600/0*I9giX8IxiZTo-7oX.gif)]

3、 胶囊网络(Capsule Networks)教程——Hinton大神力荐(视频资源来源Aurélien Géron)
https://www.youtube.com/watch?v=pPN8d0E3900

[外链图片转存失败(img-U0IpWExK-1564894969766)(https://cdn-images-1.medium.com/max/1600/1*hghxpR38LETAXxrScqxfyA.png)]

4、Netflix艺术作品的个性化推荐(文章来源于Netflix Technology 博客,中文版《你看到哪版电影海报,由算法决定:揭秘Netflix个性化推荐系统》)

https://medium.com/netflix-techblog/artwork-personalization-c589f074ad76

[外链图片转存失败(img-Cd0ecL3j-1564894969766)(https://cdn-images-1.medium.com/max/1600/0*RBwtHx_D5jYN90NH.png)]

用交叉存取使Netflix算法进行个性化革新(文章来源于Netflix Technology 博客)

https://medium.com/netflix-techblog/interleaving-in-online-experiments-at-netflix-a04ee392ec55

5、计算机视觉的这一年(中文版《计算机视觉这一年:这是最全的一份CV技术报告》)

http://www.themtank.org/a-year-in-computer-vision

The M Tank 编辑了一份报告《A Year in Computer Vision》,记录了 2016 至 2017 年计算机视觉领域的研究成果,对开发者和研究人员来说是不可多得的一份详细材料。

[外链图片转存失败(img-8pC3qDH5-1564894969766)(https://cdn-images-1.medium.com/max/1600/0*OllQFgBV29nf_els.png)]

6、用CTC进行序列建模

https://distill.pub/2017/ctc/

一个连接时态分类(CTC:Connectionist Temporal Classification)的视觉化指南,用于训练深度神经网络在语音识别、手写识别和其他序列问题中的算法。

[外链图片转存失败(img-oLW5YRs3-1564894969767)(https://cdn-images-1.medium.com/max/1600/0*aQnIK66QitsphJbK.png)]

7、 用深度学习改善姑息治疗(中文版请参阅《吴恩达团队最新成果:用深度学习来改善临终关怀服务》)

https://arxiv.org/abs/1711.06402

本文主要从两个角度探讨这个问题。首先,医生不推荐病人接受姑息治疗的原因有很多,例如:对病情的预估过度乐观、时间压力或治疗惯性。这可能会导致病人在临终前无法按照自己的意愿生活,反而接受过度的侵入式治疗。其次,姑息治疗专业人员短缺严重,这使得通过人工审查病例的方法对候选病人进行筛选既昂贵又耗时。

[外链图片转存失败(img-WgVCvXjc-1564894969767)(https://cdn-images-1.medium.com/max/1600/0*uXNEXLa3Git4XOx7.png)]

8、 稳定化策略的进化(文章来源于Google Brain团队hard maru的分享)

http://blog.otoro.net/2017/11/12/evolving-stable-strategies/

在《进化策略的可视化指南 - http://blog.otoro.net/2017/10/29/visual-evolution-strategies/》文章中,作者介绍了一些进化策略(ES)算法,可以优化函数的参数,而不需要明确计算梯度。 这些算法可以应用于强化学习(RL)问题,以帮助找到适合神经网络代理的一组模型参数。 在本文中,作者探讨将ES应用于这些RL问题中的一些问题,并强调我们可以使用的方法来找到更稳定和更健壮的策略。

[外链图片转存中…(img-qPdbExQu-1564894969767)]

9、用Python,TensorFlow和Keras进行深度学习(作者Sandipan Dey)

https://sandipanweb.wordpress.com/2017/11/25/some-deep-learning-with-python-tensorflow-and-keras/

文中所提到的几个问题来源于Introduction to Deep Learning (by Higher School of Economics) 和 Neural Networks and Deep Learning (by Prof Andrew Ng, deeplearning.ai)两门课程的作业部分。如果你也有类似的问题,不放看看文中给出的答案。

[外链图片转存中…(img-41vy3ZNz-1564894969768)]

10、神经网络介绍(中文版《干货!这里有一份神经网络入门指导,请收下!》)

http://blog.kaggle.com/2017/11/27/introduction-to-neural-networks/

本文是数据科学家Ben Gorman撰写的神经网络指导。这份指导包含了他具体的学习思路,包括所遇到的难点以及多种详细的解决方法。文章不短,但是值得深读,建议收藏!

[外链图片转存中…(img-RB47i6ns-1564894969768)]

原文地址:
https://medium.mybridge.co/machine-learning-top-10-articles-for-the-past-month-v-dec-2017-82883b8062f5

关注我的技术公众号《漫谈人工智能》,每天推送优质文章

发布了216 篇原创文章 · 获赞 477 · 访问量 53万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术工厂 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览