素数又称质数,是指除了1和它本身,再也没有其他的因子。
合数是除了1和它本身以外,还有其他的因子。
1既不是素数也不是合数。
此题为洛谷上的一道题,以此题为例题,讲解素数筛。
埃氏筛法
时间复杂度O(nlogn)
得分 80
#include <iostream>
#include <cstdio>
using namespace std;
bool isprime[100000000]={true,true};//isprime[i]为false代表i为素数
int main()
{
int n,ans=0;
cin>>n;
for(int i=2;i<=n;i++)//把数i的j倍全部筛掉,比如把5的2倍,3倍,4倍……全部筛掉,
{
if(isprime[i]==false)
{
ans++;
for(int j=2;i*j<=n;j++)
isprime[i*j]=true;
}
}
cout<<ans;
}
埃氏筛的时间复杂度为nlogn,对于输入10的8次方,必然会TLE,此算法只能得80分,因为会TLE一个点。
来分析一下埃氏筛法:
此算法有重复步骤,比如当i=2的时候,4,6,8,10,12,14,16,18,都会被筛掉,但是当i=3的时候,6,9,12,15,18,21,被筛掉,6,12,18又会被筛一次,当数据比较大的时候,重复的就比较多,耗费了不必要的时间。
优化的线性筛
时间复杂度O(n)
得分 100
#include <iostream>
#include <cstdio>
using namespace std;
bool isprime[100000000]={true,true};//isprime[i]为false代表i为素数
int p[100000000];
int main()
{
int n,cnt=0;
cin>>n;
for(int i=2;i<=n;i++)
{
if(!isprime[i])
p[cnt++]=i;//存下所有的素数
for(int j=0;j<cnt&&p[j]*i<=n;j++)
{
isprime[p[j]*i]=true;//将现有的素数的i倍都给筛掉
if(i%p[j]==0)break;//此语句是改进的核心,读者可自行画图理解
}
}
cout<<cnt;
}