本篇博客着重于进行代码实战讲解,目的是弄清楚它的实际运行情况和常规参数表达含义。至于一些理论的东西,我认为其他博主解释的已经相当好了,在下面的文章中我也会将其引用出来。
为什么使用嵌入层Embedding?
1、使用One-hot 方法编码的向量会很高维也很稀疏。假设我们在做自然语言处理(NLP)中遇到了一个包含2000个词的字典,当使用One-hot编码时,每一个词会被一个包含2000个整数的向量来表示,其中1999个数字是0,如果字典再大一点,这种方法的计算效率会大打折扣。
2、训练神经网络的过程中,每个嵌入的向量都会得到更新。通过上面的图片我们就会发现在多维空间中词与词之间有多少相似性,这使我们能可视化的了解词语之间的关系,不仅仅是词语,任何能通过嵌入层 Embedding 转换成向量的内容都可以这样做。
Embedding 的本质是什么?
来源:https://blog.csdn.net/weixin_42078618/article/details/84553940
embedding层做了个什么呢&#x

本文深入探讨PyTorch中的Embedding层,解释为何使用Embedding而非One-hot编码,阐述Embedding的本质是将稀疏矩阵转化为密集矩阵,并通过代码实践展示了Embedding的用法,揭示了其在神经网络训练中的作用和更新过程。
最低0.47元/天 解锁文章

8055

被折叠的 条评论
为什么被折叠?



