matplotlib绘制初等函数图像-幂指对

本文通过Python的matplotlib和mpl_toolkits库绘制了幂函数、指数函数和对数函数的图像,包括不同次幂的曲线,指数增长和衰减,以及自然对数和底数变化的图像,帮助读者直观理解函数图形。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**今天辅佐表弟,看到高中数学课本上的函数图像倍感亲切,于是用python编码画了一些函数图像。

幂函数图像

**
幂函数图像
代码如下:

import matplotlib.pyplot as plt
import numpy as np
import mpl_toolkits.axisartist as axisartist

figure1=plt.figure("01幂函数",figsize=(8,8))
#使用axisartist.Subplot方法创建一个绘图区对象ax
ax = axisartist.Subplot(figure1, 111)
#将绘图区对象添加到画布中
figure1.add_axes(ax)
#通过set_visible方法设置绘图区所有坐标轴隐藏
ax.axis[:].set_visible(False)
#ax.new_floating_axis代表添加新的坐标轴
ax.axis["x"] = ax.new_floating_axis(0,0)
#给x坐标轴加上箭头
ax.axis["x"].set_axisline_style("->", size = 1.0)
#添加y坐标轴,且加上箭头
ax.axis["y"] = ax.new_floating_axis(1,0)
ax.axis["y"].set_axisline_style("->", size = 1.0)
#设置x、y轴上刻度显示方向
ax.axis["x"].set_axis_direction("bottom")
ax.axis["y"].set_axis_direction("right")
#生成x坐标
x=np.linspace(-10,10,num=100)
x2=np.linspace(0,10,num=50)
y1=x
y2=x2**0.5
y3=x**3
y4=x**2
y5=x**(-1)
#y轴取值范围进行限制
plt.ylim(-10,10)
plt.plot(x,y1,"b")
plt.plot(x2,y2,"g")
plt.plot(x,y3,"r")
plt.plot(x,y4,"m")
plt.plot(x,y5)
plt.show()

指数函数图像

指数函数图像
代码如下:

import matplotlib.pyplot as plt
import numpy as np
import mpl_toolkits.axisartist as axisartist

figure1=plt.figure("02指数函数",figsize=(8,8))
#使用axisartist.Subplot方法创建一个绘图区对象ax
ax = axisartist.Subplot(figure1, 111)
#将绘图区对象添加到画布中
figure1.add_axes(ax)
#通过set_visible方法设置绘图区所有坐标轴隐藏
ax.axis[:].set_visible(False)
#ax.new_floating_axis代表添加新的坐标轴
ax.axis["x"] = ax.new_floating_axis(0,0)
#给x坐标轴加上箭头
ax.axis["x"].set_axisline_style("->", size = 1.0)
#添加y坐标轴,且加上箭头
ax.axis["y"] = ax.new_floating_axis(1,0)
ax.axis["y"].set_axisline_style("->", size = 1.0)
#设置x、y轴上刻度显示方向
ax.axis["x"].set_axis_direction("bottom")
ax.axis["y"].set_axis_direction("right")

x=np.linspace(-5,5,num=100)
y1=x**0
y=2**x
y2=np.exp(x)
y3=0.5**x
y4=1.0/np.exp(x)
plt.ylim(-5,10)
plt.plot(x,y1,"k")
plt.plot(x,y,"b",label="y=2**x")
plt.plot(x,y2,"r",label="y=e**x")
plt.plot(x,y3,"g",label="y=0.5**x")
plt.plot(x,y4,"m",label="y=1/e**x")
plt.legend()
plt.show()

对数函数图像对数函数图像

import matplotlib.pyplot as plt
import numpy as np
import mpl_toolkits.axisartist as axisartist

figure1=plt.figure("03对数函数",figsize=(8,8))
#使用axisartist.Subplot方法创建一个绘图区对象ax
ax = axisartist.Subplot(figure1, 111)
#将绘图区对象添加到画布中
figure1.add_axes(ax)
#通过set_visible方法设置绘图区所有坐标轴隐藏
ax.axis[:].set_visible(False)
#ax.new_floating_axis代表添加新的坐标轴
ax.axis["x"] = ax.new_floating_axis(0,0)
#给x坐标轴加上箭头
ax.axis["x"].set_axisline_style("->", size = 1.0)
#添加y坐标轴,且加上箭头
ax.axis["y"] = ax.new_floating_axis(1,0)
ax.axis["y"].set_axisline_style("->", size = 1.0)
#设置x、y轴上刻度显示方向
ax.axis["x"].set_axis_direction("bottom")
ax.axis["y"].set_axis_direction("right")

x=np.linspace(0,5,num=100)

y=np.log(x)
y3=-np.log(x)
y1=np.log(x)/np.log(2)
y2=np.log(x)/np.log(3)
y12=np.log(x)/np.log(0.5)
y22=np.log(x)/np.log(1.0/3)

plt.plot(x,y,"b",label="y=lnx")
plt.plot(x,y3,"g",label="y-1=lnx")
plt.plot(x,y1,"r",label="y=log2x")
plt.plot(x,y12,"m",label="y-1=log2x")
plt.plot(x,y2,label="y=log3x")
plt.plot(x,y22,label="y-1=log3x")
plt.legend()
plt.show()

希望对你有所帮助,谢谢!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

码力全开666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值