人工智能中的知识表示与推理技术概述
一、引言
在人工智能(AI)的漫长演进中,知识表示与推理技术一直占据着核心地位。这两大技术不仅是连接现实世界与计算机世界的桥梁,更是实现智能化决策与行为的基础。随着科技的不断进步,尤其是大数据、云计算和深度学习等技术的快速发展,对知识表示与推理技术的需求和研究也在不断深化。本文旨在详细介绍人工智能领域中的几种主要知识表示与推理技术,包括描述逻辑、Horn逻辑、产生式系统、框架系统和语义网络等,以期为相关领域的研究和应用提供参考。

二、知识表示与推理技术概述
1. 描述逻辑
描述逻辑(Description Logics)作为一阶谓词逻辑的可判定子集,主要用于描述概念、属性以及它们之间的关系。其核心表达要素包括概念(Class)、关系(Role)和个体(Instance)。描述逻辑提供了一种形式化的方法来描述和推理关于概念的知识,包括概念的定义、继承、包含等关系。
描述逻辑的知识库通常由两部分组成:内涵知识(TBox)和外延知识
订阅专栏 解锁全文
4028

被折叠的 条评论
为什么被折叠?



