1、图的定义
图(graph)是一种非线性数据结构,由顶点(vertex)和边(edge)组成。我们可以将图 抽象地表示为一组顶点 和一组边的集合。如果将顶点看作节点,将边看作连接各个节点的引用(指针),我们就可以将图看作一种从链表拓展而来的数据结构。如图所示,相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,因而更为复杂。
2、图的类型
1)根据边是否具有方向,可分为无向图(undirected graph)和有向图(directed graph),如图 9-2 所示。
- 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
- 在有向图中,边具有方向性,即两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系。
2)根据所有顶点是否连通,可分为连通图(connected graph)和非连通图(disconnected graph),如图所示。
- 对于连通图,从某个顶点出发,可以到达其余任意顶点。
- 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。
3)可以为边添加“权重”变量,从而得到如图 9-4 所示的有权图(weighted graph)。例如在《王者荣耀》等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
3、图的常用术语
图数据结构包含以下常用术语。
- 邻接(adjacency):当两顶点之间存在边相连时,称这两顶点“邻接”。在图 9-4 中,顶点 1 的邻接顶点为顶点 2、3、5。
- 路径(path):从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在图 9-4 中,边序列 1-5-2-4是顶点 1 到顶点 4 的一条路径。
- 度(degree):一个顶点拥有的边数。对于有向图,入度(in-degree)表示有多少条边指向该顶点,出度(out-degree)表示有多少条边从该顶点指出。
4、图的表示
图的常用表示方式包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。
4.1 邻接矩阵
设图的顶点数量为 n,邻接矩阵(adjacency matrix)使用一个 n*n大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 1或 0 表示两个顶点之间是否存在边。
邻接矩阵具有以下特性。
- 顶点不能与自身相连,因此邻接矩阵主对角线元素没有意义。
- 对于无向图,两个方向的边等价,此时邻接矩阵关于主对角线对称。
- 将邻接矩阵的元素从1和 0替换为权重,则可表示有权图。
使用邻接矩阵表示图时,我们可以直接访问矩阵元素以获取边,因此增删查改操作的效率很高,但内存占用较多。
4.2 邻接表
邻接表(adjacency list)使用n个链表来表示图,链表节点表示顶点。第i个链表对应顶点i,其中存储了该顶点的所有邻接顶点(与该顶点相连的顶点)。下图展示了一个使用邻接表存储的图的示例。
邻接表仅存储实际存在的边,而边的总数通常远小于 n² ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。
5、图的基础实现
5.1 基于邻接矩阵的实现
给定一个顶点数量为n的无向图,则各种操作的实现方式如下:
- 初始化
- 添加或删除边
- 添加删除顶点
/* 基于邻接矩阵实现的无向图类 */
class GraphAdjMat {
vector<int> vertices; // 顶点列表,元素代表“顶点值”,索引代表“顶点索引”
vector<vector<int>> adjMat; // 邻接矩阵,行列索引对应“顶点索引”
public:
/* 构造方法 */
GraphAdjMat(const vector<int> &vertices, const vector<vector<int>> &edges) {
// 添加顶点
for (int val : vertices) {
addVertex(val);
}
// 添加边
// 请注意,edges 元素代表顶点索引,即对应 vertices 元素索引
for (const vector<int> &edge : edges) {
addEdge(edge[0], edge[1]);
}
}
/* 获取顶点数量 */
int size() const {
return vertices.size();
}
/* 添加顶点 */
void addVertex(int val) {
int n = size();
// 向顶点列表中添加新顶点的值
vertices.push_back(val);
// 在邻接矩阵中添加一行
adjMat.emplace_back(vector<int>(n, 0));
// 在邻接矩阵中添加一列
for