原理
我们前面学习了几个特征检测器,它们大多数效果都很好。但是从实时处理的角度来看,这些算法都不够快。一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限。
为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里 FAST 算法。我们下面将会对此算法进行一个简单的介绍。你可以参考原始文献获得更多细节(本节中的所有图像都是曲子原始文章)。
34.1 使用 FAST 算法进行特征提取
1. 在图像中选取一个像素点 p,来判断它是不是关键点。I p 等于像素点 p的灰度值。
2. 选择适当的阈值 t。
3. 如果在这 16 个像素点中存在 n 个连续像素点的灰度值都高于 I p + t,或者低于 I p −t,那么像素点 p 就被认为是一个角点。如上图中的虚线所示,n 选取的值为 12。
4. 为了获得更快的效果,还采用了而外的加速办法。首先对候选点的周围每个 90 度的点:1,9,5,13 进行测试(先测试 1 和 19, 如果它们符合阈值要求再测试 5 和 13)。如果 p 是角点,那么这四个点中至少有 3 个要符合阈值要求。如果不是的话肯定不是角点,就放弃。对通过这步测试的点再继续进行测试(是否有 12 的点符合阈值要求)。这个检测器的效率很高,但是它有如下几条缺点:
• 当 n<12 时它不会丢弃很多候选点 (获得的候选点比较多)。
• 像素的选取不是最优的,因为它的效果取决与要解决的问题和角点的分布情况。
• 高速测试的结果被抛弃
• 检测到的很多特征点都是连在一起的。
前 3 个问题可以通过机器学习的方法解决,最后一个问题可以使用非最大值抑制的方法解决。
34.2 机器学习的角点检测器
1. 选择一组训练图片(最好是跟最后应用相关的图片)
2. 使用 FAST 算法找出每幅图像的特征点
3. 对每一个特征点,将其周围的 16 个像素存储构成一个向量。对所有图像都这样做构建一个特征向量 P
4. 每一个特征点的 16 像素点都属于下列三类中的一种。
5. 根据这些像素点的分类,特征向量 P 也被分为 3 个子集:P d ,P s ,P b
6. 定义一个新的布尔变量 K p ,如果 p 是角点就设置为 Ture,如果不是就设置为 False。
7. 使用 ID3 算法(决策树分类器)Use the ID3 algorithm (decision tree classifier) to query each subset using the variable K p for the knowledge about the true class. It selects the x which yields the most information about whether the candidate pixel is a corner, measured by the entropy of K p .
8. This is recursively applied to all the subsets until its entropy iszero.
9. 将构建好的决策树运用于其他图像的快速的检测。
34.3 非极大值抑制
使用极大值抑制的方法可以解决检测到的特征点相连的问题
1. 对所有检测到到特征点构建一个打分函数 V。V 就是像素点 p 与周围 16个像素点差值的绝对值之和。
2. 计算临近两个特征点的打分函数 V。
3. 忽略 V 值最低的特征点
97

被折叠的 条评论
为什么被折叠?



