对于经典算法,你是否也遇到这样的情形:学时觉得很清楚,可过阵子就忘了?
本系列文章就尝试解决这个问题。
研读那些排序算法,细品它们的名字,其实都很贴切。
比如快速排序,一个快字就能体现出其价值,因而它是用得最多的。
因为它相对难一些,本系列将分两篇文章讲解它。
本篇是一种简单实现版本,与归并排序做对比,摸清快排的总体思路。下一篇才是常见于各教程中的原地排序算法。
快速排序这个名字是针对其性能来起的,但很难让人做到见名知意。
所以,我给它重新起了个名字:归分排序。
与归并算法一样,归分算法也是分而治之算法,讲究分、归、并。前者的重头戏在于如何去合并,后者的重头戏在于如何去划分。
上图中,先把数组按最后一个元素4作为分界点,把数组一分为三。左子部分全是小于等于4的,右子部分全是大于4的,它们可以进一步递归排序,最后合并这三部分。
其中,并和归相对容易些,该算法的核心是:如何把数组按分界点一分为三?
这一点对于我们JSer来说,非常容易,使用filter就能做到:
let pivot = array[array.length - 1]
let left = array.filter((v, i) => v <= pivot && i != array.length -1)
let right = array.filter(v => v > pivot)
复制代码其中left部分要排除掉分界点元素,因此要求不能是最后一个。
分,这个核心问题解决了,接下来我们来看看并和归。
关于并,要拼接三个数组,在JS中都有相应的API(比如concat),这里我们简单实用展开运算符即可:
let result = […left, pivot, …right]
复制代码至于递归,虽然它不符合线性思维,但其实也没啥难的。
只要有递归步骤(递归公式),很容翻译成代码的。
我们再回忆一下归分算法的步骤:
数组分成三部分left、pivot、right,使left<=pivot,right>pivot
递归处理left
递归处理right
合并三者结果
轻松翻译成代码:
function quickSort(array) {
let pivot = array[array.length - 1]
let left = array.filter((v, i) => v <= pivot && i != array.length -1)
let right = array.filter(v => v > pivot)
return […quickSort(left), pivot, …quickSort(right)]
}
复制代码递归是自身调用自身,不能无限次的调用下去,因此需要有递归出口(初始条件)。
它的递归出口是,当数组元素个数为小于2时,就是已经是排好序的,不需要再递归调用了。
因此需要在前面加入代码:
if (array.length < 2) return array
复制代码查看完整代码:codepen。
至此,我们实现了一个快速排序简单版,它与归并排序相对。
这里总结一下,此版本的快速排序每一次递归调用,需要额外空间,复杂度为O(n),不是本地排序。说起空间复杂度,递归也需要空间(相当于手动维护一个调用栈),因此总体空间复杂度是O(nlogn)。相等元素是不会交换前后顺序,因而是稳定排序(这与我们选择最后一个元素为分界点有关)。时间复杂度为O(nlogn)。
快速排序,要做到能分分钟手写出来,是需要掌握其排序原理的。关键在于,如何按照分界点把数组一分为三。至于递归,只要能说清楚递归步骤和出口,就能很容易写出来,不需要死记硬背的
作者:老姚
链接:https://juejin.cn/post/6844903938290876430
来源:掘金
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。