很有意思的文章,我之前做过一些深度学习的降噪任务,针对不同光照条件下的图像进行降噪。这个时候就会涉及到标签样本的制作。
在监控领域中,相差6个db的照度,图像的噪点就会有明显的差异性。所以我们在训练模型的时候,如果用了40db的噪点图,那么标签可能是30db的图像,也可能是20db的图或者其他更加干净的图。很明显,30db的图像尽管比40db的图像噪点表现要好,但也是有噪点的。为什么依然能够训练模型呢,Noise2Noise: Learning Image Restoration without Clean Data 这篇文章里面给出了一些实验和解释。另外从传统降噪算法的角度看,BM3D降噪也有点这个意思。BM3D算法中寻找的相似块也不是无噪点图。
具体原理很多博客做了一些解释,本文不再具体叙述,有时间我会做些实验进一步验证下。

834

被折叠的 条评论
为什么被折叠?



