小白学python-爬虫常用库

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/m0_37499059/article/details/79149636

1.urllib   re

2.requests

pip3 install requests

3.selenium (驱动浏览器,自动化测试,加载js绚烂)

4.ChromDriver  (放到usr/bin目录下)

wget -N http://chromedriver.storage.googleapis.com/2.29/chromedriver_linux64.zip

安装Google chrome浏览器:

      将下载源加入到系统的源列表。命令的反馈结果如图。

sudo wget http://www.linuxidc.com/files/repo/google-chrome.list -P /etc/apt/sources.list.d/
导入谷歌软件的公钥,用于下面步骤中对下载软件进行验证。

wget -q -O - https://dl.google.com/linux/linux_signing_key.pub  | sudo apt-key add -
用于对当前系统的可用更新列表进行更新

sudo apt-get update
执行对谷歌 Chrome 浏览器(稳定版)的安装。

sudo apt-get install google-chrome-stable
启动谷歌 Chrome 浏览器
/usr/bin/google-chrome-stable

验证是否安装成功:

from selenium import webdriver

driver = webdriver.Chrome()
driver.get("http://zhaoyabei.github.io/")
driver.save_screenshot(driver.title+".png")

可以发现Google chrome 打开了。


5.phantomjs

提供一个浏览器环境的命令行接口,你可以把它看作一个“虚拟浏览器”,除了不能浏览,其他与正常浏览器一样。它的内核是WebKit引擎,不提供图形界面,只能在命令行下使用,我们可以用它完成一些特殊的用途。

https://github.com/ariya/phantomjs/archive/2.1.3.zip

apt install phantomjs


6.lxml (解析网页)

pip3 install lxml
7.beautifulsoup(网页解析库)

pip3 install beautifulsoup4

8.pyquery(网页解析库)

语法和jquery相似

pip3 install pyquery

9.pymysql

pip3 install pymysql
>>> import pymysql
>>> conn = pymysql.connect(host="localhost",user="root",password="123456",port=3306,db="cxx")
>>> cursor = conn.cursor()
>>> cursor.execute('select* from user')
1
>>> cursor.fetchone()
(1, 'root', '123456')
import pymysql  #导入 pymysql

#打开数据库连接
db= pymysql.connect(host="localhost",user="root",
 	password="123456",db="test",port=3307)

# 使用cursor()方法获取操作游标
cur = db.cursor()

#1.查询操作
# 编写sql 查询语句  user 对应我的表名
sql = "select * from user"
try:
	cur.execute(sql) 	#执行sql语句

	results = cur.fetchall()	#获取查询的所有记录
	print("id","name","password")
	#遍历结果
	for row in results :
		id = row[0]
		name = row[1]
		password = row[2]
		print(id,name,password)
except Exception as e:
	raise e
finally:
	db.close()	#关闭连接



9.pymongo (用mongodb存储数据,不需要建表,不需关心表的结构)

pip3 install pymongo
>>> client = pymongo.MongoClient('localhost', 27017)
>>> db = client.test_database
>>> db = client['test-database']
>>> db = client.personmap
>>> collection = db.person
>>> collection.find()
<pymongo.cursor.Cursor object at 0x7fe80ab290f0>
>>> collection.find_one({'name':"01"})
{'_id': ObjectId('5a673abe6f4fd2195f89a40a'), 'age': 1.0, 'name': '01'}
db.person.insert({"name":"07","age":"3"})
ObjectId('5a683e1ea91935096798c2ad')
>>> collection.find_one({'name':"07"})
{'_id': ObjectId('5a683e1ea91935096798c2ad'), 'age': '3', 'name': '07'}


10.redis (分布式)

pip3 install redis
在 Ubuntu 系统安装 Redi 可以使用以下命令:

$sudo apt-get update
$sudo apt-get install redis-server

启动 Redis

$ redis-server

查看 redis 是否启动?

$ redis-cli

以上命令将打开以下终端:

redis 127.0.0.1:6379>

127.0.0.1 是本机 IP ,6379 是 redis 服务端口。现在我们输入 PING 命令。

redis 127.0.0.1:6379> ping
PONG

以上说明我们已经成功安装了redis。


11.flask(Flask是一个使用 Python 编写的轻量级 Web 应用框架。代理设置常用)

pip3 install flask
from flask import Flask
app = Flask(__name__)
@app.route("/")
def hello():    
    return "Hello World!"
 
if __name__ == "__main__":
    app.run()

$ python
hello.py* Running on http://localhost:5000/



12.django(web服务器框架,来做一个完整的网站)

Django是重量级选手中最有代表性的一位。许多成功的网站和APP都基于Django。采用了MT'V的框架模式,即模型M,模板T和视图V。

pip3 install django


13.jupyter(记事本,在线调试,在线运行,安装的时候依赖库比较多)

是一个交互式笔记本,支持运行 40 多种编程语言。Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等

pip3 install jupyter
jupyter notebook


这个列表包含与网页抓取和数据处理的Python

网络

  • 通用
    • urllib -网络库(stdlib)。
    • requests -网络库。
    • grab – 网络库(基于pycurl)。
    • pycurl – 网络库(绑定libcurl)。
    • urllib3 – Python HTTP库,安全连接池、支持文件post、可用性高。
    • httplib2 – 网络库。
    • RoboBrowser – 一个简单的、极具Python风格的Python库,无需独立的浏览器即可浏览网页。
    • MechanicalSoup -一个与网站自动交互Python库。
    • mechanize -有状态、可编程的Web浏览库。
    • socket – 底层网络接口(stdlib)。
    • Unirest for Python – Unirest是一套可用于多种语言的轻量级的HTTP库。
    • hyper – Python的HTTP/2客户端。
    • PySocks – SocksiPy更新并积极维护的版本,包括错误修复和一些其他的特征。作为socket模块的直接替换。
  • 异步
    • treq – 类似于requests的API(基于twisted)。
    • aiohttp – asyncio的HTTP客户端/服务器(PEP-3156)。

网络爬虫框架

  • 功能齐全的爬虫
    • grab – 网络爬虫框架(基于pycurl/multicur)。
    • scrapy – 网络爬虫框架(基于twisted),不支持Python3。
    • pyspider – 一个强大的爬虫系统。
    • cola – 一个分布式爬虫框架。
  • 其他
    • portia – 基于Scrapy的可视化爬虫。
    • restkit – Python的HTTP资源工具包。它可以让你轻松地访问HTTP资源,并围绕它建立的对象。
    • demiurge – 基于PyQuery的爬虫微框架。

HTML/XML解析器

  • 通用
    • lxml – C语言编写高效HTML/ XML处理库。支持XPath。
    • cssselect – 解析DOM树和CSS选择器。
    • pyquery – 解析DOM树和jQuery选择器。
    • BeautifulSoup – 低效HTML/ XML处理库,纯Python实现。
    • html5lib – 根据WHATWG规范生成HTML/ XML文档的DOM。该规范被用在现在所有的浏览器上。
    • feedparser – 解析RSS/ATOM feeds。
    • MarkupSafe – 为XML/HTML/XHTML提供了安全转义的字符串。
    • xmltodict – 一个可以让你在处理XML时感觉像在处理JSON一样的Python模块。
    • xhtml2pdf – 将HTML/CSS转换为PDF。
    • untangle – 轻松实现将XML文件转换为Python对象。
  • 清理
    • Bleach – 清理HTML(需要html5lib)。
    • sanitize – 为混乱的数据世界带来清明。

文本处理

用于解析和操作简单文本的库。

  • 通用
  • difflib – (Python标准库)帮助进行差异化比较。
  • Levenshtein – 快速计算Levenshtein距离和字符串相似度。
  • fuzzywuzzy – 模糊字符串匹配。
  • esmre – 正则表达式加速器。
  • ftfy – 自动整理Unicode文本,减少碎片化。
  • 转换
  • unidecode – 将Unicode文本转为ASCII。
  • 字符编码
  • uniout – 打印可读字符,而不是被转义的字符串。
  • chardet – 兼容 Python的2/3的字符编码器。
  • xpinyin – 一个将中国汉字转为拼音的库。
  • pangu.py – 格式化文本中CJK和字母数字的间距。
  • Slug化
  • awesome-slugify – 一个可以保留unicode的Python slugify库。
  • python-slugify – 一个可以将Unicode转为ASCII的Python slugify库。
  • unicode-slugify – 一个可以将生成Unicode slugs的工具。
  • pytils – 处理俄语字符串的简单工具(包括pytils.translit.slugify)。
  • 通用解析器
  • PLY – lex和yacc解析工具的Python实现。
  • pyparsing – 一个通用框架的生成语法分析器。
  • 人的名字
  • 电话号码
  • phonenumbers -解析,格式化,存储和验证国际电话号码。
  • 用户代理字符串

特定格式文件处理

解析和处理特定文本格式的库。

  • 通用
  • tablib – 一个把数据导出为XLS、CSV、JSON、YAML等格式的模块。
  • textract – 从各种文件中提取文本,比如 Word、PowerPoint、PDF等。
  • messytables – 解析混乱的表格数据的工具。
  • rows – 一个常用数据接口,支持的格式很多(目前支持CSV,HTML,XLS,TXT – 将来还会提供更多!)。
  • Office
  • python-docx – 读取,查询和修改的Microsoft Word2007/2008的docx文件。
  • xlwt / xlrd – 从Excel文件读取写入数据和格式信息。
  • XlsxWriter – 一个创建Excel.xlsx文件的Python模块。
  • xlwings – 一个BSD许可的库,可以很容易地在Excel中调用Python,反之亦然。
  • openpyxl – 一个用于读取和写入的Excel2010 XLSX/ XLSM/ xltx/ XLTM文件的库。
  • Marmir – 提取Python数据结构并将其转换为电子表格。
  • PDF
  • PDFMiner – 一个从PDF文档中提取信息的工具。
  • PyPDF2 – 一个能够分割、合并和转换PDF页面的库。
  • ReportLab – 允许快速创建丰富的PDF文档。
  • pdftables – 直接从PDF文件中提取表格。
  • Markdown
  • Python-Markdown – 一个用Python实现的John Gruber的Markdown。
  • Mistune – 速度最快,功能全面的Markdown纯Python解析器。
  • markdown2 – 一个完全用Python实现的快速的Markdown。
  • YAML
  • PyYAML – 一个Python的YAML解析器。
  • CSS
  • ATOM/RSS
  • SQL
  • sqlparse – 一个非验证的SQL语句分析器。
  • HTTP
  • HTTP
  • http-parser – C语言实现的HTTP请求/响应消息解析器。
  • 微格式
  • opengraph – 一个用来解析Open Graph协议标签的Python模块。
  • 可移植的执行体
  • pefile – 一个多平台的用于解析和处理可移植执行体(即PE)文件的模块。
  • PSD
  • psd-tools – 将Adobe Photoshop PSD(即PE)文件读取到Python数据结构。

自然语言处理

处理人类语言问题的库。

  • NLTK -编写Python程序来处理人类语言数据的最好平台。
  • Pattern – Python的网络挖掘模块。他有自然语言处理工具,机器学习以及其它。
  • TextBlob – 为深入自然语言处理任务提供了一致的API。是基于NLTK以及Pattern的巨人之肩上发展的。
  • jieba – 中文分词工具。
  • SnowNLP – 中文文本处理库。
  • loso – 另一个中文分词库。
  • genius – 基于条件随机域的中文分词。
  • langid.py – 独立的语言识别系统。
  • Korean – 一个韩文形态库。
  • pymorphy2 – 俄语形态分析器(词性标注+词形变化引擎)。
  • PyPLN  – 用Python编写的分布式自然语言处理通道。这个项目的目标是创建一种简单的方法使用NLTK通过网络接口处理大语言库。

浏览器自动化与仿真

  • selenium – 自动化真正的浏览器(Chrome浏览器,火狐浏览器,Opera浏览器,IE浏览器)。
  • Ghost.py – 对PyQt的webkit的封装(需要PyQT)。
  • Spynner – 对PyQt的webkit的封装(需要PyQT)。
  • Splinter – 通用API浏览器模拟器(selenium web驱动,Django客户端,Zope)。

多重处理

  • threading – Python标准库的线程运行。对于I/O密集型任务很有效。对于CPU绑定的任务没用,因为python GIL。
  • multiprocessing – 标准的Python库运行多进程。
  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • concurrent-futures – concurrent-futures 模块为调用异步执行提供了一个高层次的接口。

异步

异步网络编程库

  • asyncio – (在Python 3.4 +版本以上的 Python标准库)异步I/O,时间循环,协同程序和任务。
  • Twisted – 基于事件驱动的网络引擎框架。
  • Tornado – 一个网络框架和异步网络库。
  • pulsar – Python事件驱动的并发框架。
  • diesel – Python的基于绿色事件的I/O框架。
  • gevent – 一个使用greenlet 的基于协程的Python网络库。
  • eventlet – 有WSGI支持的异步框架。
  • Tomorrow – 异步代码的奇妙的修饰语法。

队列

  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • huey – 小型多线程任务队列。
  • mrq – Mr. Queue – 使用redis & Gevent 的Python分布式工作任务队列。
  • RQ – 基于Redis的轻量级任务队列管理器。
  • simpleq – 一个简单的,可无限扩展,基于Amazon SQS的队列。
  • python-gearman – Gearman的Python API。

云计算

  • picloud – 云端执行Python代码。
  • dominoup.com – 云端执行R,Python和matlab代码。

电子邮件

电子邮件解析库

  • flanker – 电子邮件地址和Mime解析库。
  • Talon – Mailgun库用于提取消息的报价和签名。

网址和网络地址操作

解析/修改网址和网络地址库。

  • URL
    • furl – 一个小的Python库,使得操纵URL简单化。
    • purl – 一个简单的不可改变的URL以及一个干净的用于调试和操作的API。
    • urllib.parse – 用于打破统一资源定位器(URL)的字符串在组件(寻址方案,网络位置,路径等)之间的隔断,为了结合组件到一个URL字符串,并将“相对URL”转化为一个绝对URL,称之为“基本URL”。
    • tldextract – 从URL的注册域和子域中准确分离TLD,使用公共后缀列表。
  • 网络地址
    • netaddr – 用于显示和操纵网络地址的Python库。

 

网页内容提取

提取网页内容的库。

  • HTML页面的文本和元数据
    • newspaper – 用Python进行新闻提取、文章提取和内容策展。
    • html2text – 将HTML转为Markdown格式文本。
    • python-goose – HTML内容/文章提取器。
    • lassie – 人性化的网页内容检索工具
    • micawber – 一个从网址中提取丰富内容的小库。
    • sumy -一个自动汇总文本文件和HTML网页的模块
    • Haul – 一个可扩展的图像爬虫。
    • python-readability – arc90 readability工具的快速Python接口。
    • scrapely – 从HTML网页中提取结构化数据的库。给出了一些Web页面和数据提取的示例,scrapely为所有类似的网页构建一个分析器。
  • 视频
    • youtube-dl – 一个从YouTube下载视频的小命令行程序。
    • you-get – Python3的YouTube、优酷/ Niconico视频下载器。
  • 维基
    • WikiTeam – 下载和保存wikis的工具。

WebSocket

用于WebSocket的库。

  • Crossbar – 开源的应用消息传递路由器(Python实现的用于Autobahn的WebSocket和WAMP)。
  • AutobahnPython – 提供了WebSocket协议和WAMP协议的Python实现并且开源。
  • WebSocket-for-Python – Python 2和3以及PyPy的WebSocket客户端和服务器库。

DNS解析

  • dnsyo – 在全球超过1500个的DNS服务器上检查你的DNS。
  • pycares – c-ares的接口。c-ares是进行DNS请求和异步名称决议的C语言库。

计算机视觉

  • OpenCV – 开源计算机视觉库。
  • SimpleCV – 用于照相机、图像处理、特征提取、格式转换的简介,可读性强的接口(基于OpenCV)。
  • mahotas – 快速计算机图像处理算法(完全使用 C++ 实现),完全基于 numpy 的数组作为它的数据类型。

代理服务器

  • shadowsocks – 一个快速隧道代理,可帮你穿透防火墙(支持TCP和UDP,TFO,多用户和平滑重启,目的IP黑名单)。
  • tproxy – tproxy是一个简单的TCP路由代理(第7层),基于Gevent,用Python进行配置。

其他Python工具列表



网络

  • 通用
    • urllib -网络库(stdlib)。
    • requests -网络库。
    • grab – 网络库(基于pycurl)。
    • pycurl – 网络库(绑定libcurl)。
    • urllib3 – Python HTTP库,安全连接池、支持文件post、可用性高。
    • httplib2 – 网络库。
    • RoboBrowser – 一个简单的、极具Python风格的Python库,无需独立的浏览器即可浏览网页。
    • MechanicalSoup -一个与网站自动交互Python库。
    • mechanize -有状态、可编程的Web浏览库。
    • socket – 底层网络接口(stdlib)。
    • Unirest for Python – Unirest是一套可用于多种语言的轻量级的HTTP库。
    • hyper – Python的HTTP/2客户端。
    • PySocks – SocksiPy更新并积极维护的版本,包括错误修复和一些其他的特征。作为socket模块的直接替换。
  • 异步
    • treq – 类似于requests的API(基于twisted)。
    • aiohttp – asyncio的HTTP客户端/服务器(PEP-3156)。

网络爬虫框架

  • 功能齐全的爬虫
    • grab – 网络爬虫框架(基于pycurl/multicur)。
    • scrapy – 网络爬虫框架(基于twisted),不支持Python3。
    • pyspider – 一个强大的爬虫系统。
    • cola – 一个分布式爬虫框架。
  • 其他
    • portia – 基于Scrapy的可视化爬虫。
    • restkit – Python的HTTP资源工具包。它可以让你轻松地访问HTTP资源,并围绕它建立的对象。
    • demiurge – 基于PyQuery的爬虫微框架。

HTML/XML解析器

  • 通用
    • lxml – C语言编写高效HTML/ XML处理库。支持XPath。
    • cssselect – 解析DOM树和CSS选择器。
    • pyquery – 解析DOM树和jQuery选择器。
    • BeautifulSoup – 低效HTML/ XML处理库,纯Python实现。
    • html5lib – 根据WHATWG规范生成HTML/ XML文档的DOM。该规范被用在现在所有的浏览器上。
    • feedparser – 解析RSS/ATOM feeds。
    • MarkupSafe – 为XML/HTML/XHTML提供了安全转义的字符串。
    • xmltodict – 一个可以让你在处理XML时感觉像在处理JSON一样的Python模块。
    • xhtml2pdf – 将HTML/CSS转换为PDF。
    • untangle – 轻松实现将XML文件转换为Python对象。
  • 清理
    • Bleach – 清理HTML(需要html5lib)。
    • sanitize – 为混乱的数据世界带来清明。

文本处理

用于解析和操作简单文本的库。

  • 通用
  • difflib – (Python标准库)帮助进行差异化比较。
  • Levenshtein – 快速计算Levenshtein距离和字符串相似度。
  • fuzzywuzzy – 模糊字符串匹配。
  • esmre – 正则表达式加速器。
  • ftfy – 自动整理Unicode文本,减少碎片化。
  • 转换
  • unidecode – 将Unicode文本转为ASCII。
  • 字符编码
  • uniout – 打印可读字符,而不是被转义的字符串。
  • chardet – 兼容 Python的2/3的字符编码器。
  • xpinyin – 一个将中国汉字转为拼音的库。
  • pangu.py – 格式化文本中CJK和字母数字的间距。
  • Slug化
  • awesome-slugify – 一个可以保留unicode的Python slugify库。
  • python-slugify – 一个可以将Unicode转为ASCII的Python slugify库。
  • unicode-slugify – 一个可以将生成Unicode slugs的工具。
  • pytils – 处理俄语字符串的简单工具(包括pytils.translit.slugify)。
  • 通用解析器
  • PLY – lex和yacc解析工具的Python实现。
  • pyparsing – 一个通用框架的生成语法分析器。
  • 人的名字
  • 电话号码
  • phonenumbers -解析,格式化,存储和验证国际电话号码。
  • 用户代理字符串

特定格式文件处理

解析和处理特定文本格式的库。

  • 通用
  • tablib – 一个把数据导出为XLS、CSV、JSON、YAML等格式的模块。
  • textract – 从各种文件中提取文本,比如 Word、PowerPoint、PDF等。
  • messytables – 解析混乱的表格数据的工具。
  • rows – 一个常用数据接口,支持的格式很多(目前支持CSV,HTML,XLS,TXT – 将来还会提供更多!)。
  • Office
  • python-docx – 读取,查询和修改的Microsoft Word2007/2008的docx文件。
  • xlwt / xlrd – 从Excel文件读取写入数据和格式信息。
  • XlsxWriter – 一个创建Excel.xlsx文件的Python模块。
  • xlwings – 一个BSD许可的库,可以很容易地在Excel中调用Python,反之亦然。
  • openpyxl – 一个用于读取和写入的Excel2010 XLSX/ XLSM/ xltx/ XLTM文件的库。
  • Marmir – 提取Python数据结构并将其转换为电子表格。
  • PDF
  • PDFMiner – 一个从PDF文档中提取信息的工具。
  • PyPDF2 – 一个能够分割、合并和转换PDF页面的库。
  • ReportLab – 允许快速创建丰富的PDF文档。
  • pdftables – 直接从PDF文件中提取表格。
  • Markdown
  • Python-Markdown – 一个用Python实现的John Gruber的Markdown。
  • Mistune – 速度最快,功能全面的Markdown纯Python解析器。
  • markdown2 – 一个完全用Python实现的快速的Markdown。
  • YAML
  • PyYAML – 一个Python的YAML解析器。
  • CSS
  • ATOM/RSS
  • SQL
  • sqlparse – 一个非验证的SQL语句分析器。
  • HTTP
  • HTTP
  • http-parser – C语言实现的HTTP请求/响应消息解析器。
  • 微格式
  • opengraph – 一个用来解析Open Graph协议标签的Python模块。
  • 可移植的执行体
  • pefile – 一个多平台的用于解析和处理可移植执行体(即PE)文件的模块。
  • PSD
  • psd-tools – 将Adobe Photoshop PSD(即PE)文件读取到Python数据结构。

自然语言处理

处理人类语言问题的库。

  • NLTK -编写Python程序来处理人类语言数据的最好平台。
  • Pattern – Python的网络挖掘模块。他有自然语言处理工具,机器学习以及其它。
  • TextBlob – 为深入自然语言处理任务提供了一致的API。是基于NLTK以及Pattern的巨人之肩上发展的。
  • jieba – 中文分词工具。
  • SnowNLP – 中文文本处理库。
  • loso – 另一个中文分词库。
  • genius – 基于条件随机域的中文分词。
  • langid.py – 独立的语言识别系统。
  • Korean – 一个韩文形态库。
  • pymorphy2 – 俄语形态分析器(词性标注+词形变化引擎)。
  • PyPLN  – 用Python编写的分布式自然语言处理通道。这个项目的目标是创建一种简单的方法使用NLTK通过网络接口处理大语言库。

浏览器自动化与仿真

  • selenium – 自动化真正的浏览器(Chrome浏览器,火狐浏览器,Opera浏览器,IE浏览器)。
  • Ghost.py – 对PyQt的webkit的封装(需要PyQT)。
  • Spynner – 对PyQt的webkit的封装(需要PyQT)。
  • Splinter – 通用API浏览器模拟器(selenium web驱动,Django客户端,Zope)。

多重处理

  • threading – Python标准库的线程运行。对于I/O密集型任务很有效。对于CPU绑定的任务没用,因为python GIL。
  • multiprocessing – 标准的Python库运行多进程。
  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • concurrent-futures – concurrent-futures 模块为调用异步执行提供了一个高层次的接口。

异步

异步网络编程库

  • asyncio – (在Python 3.4 +版本以上的 Python标准库)异步I/O,时间循环,协同程序和任务。
  • Twisted – 基于事件驱动的网络引擎框架。
  • Tornado – 一个网络框架和异步网络库。
  • pulsar – Python事件驱动的并发框架。
  • diesel – Python的基于绿色事件的I/O框架。
  • gevent – 一个使用greenlet 的基于协程的Python网络库。
  • eventlet – 有WSGI支持的异步框架。
  • Tomorrow – 异步代码的奇妙的修饰语法。

队列

  • celery – 基于分布式消息传递的异步任务队列/作业队列。
  • huey – 小型多线程任务队列。
  • mrq – Mr. Queue – 使用redis & Gevent 的Python分布式工作任务队列。
  • RQ – 基于Redis的轻量级任务队列管理器。
  • simpleq – 一个简单的,可无限扩展,基于Amazon SQS的队列。
  • python-gearman – Gearman的Python API。

云计算

  • picloud – 云端执行Python代码。
  • dominoup.com – 云端执行R,Python和matlab代码。

电子邮件

电子邮件解析库

  • flanker – 电子邮件地址和Mime解析库。
  • Talon – Mailgun库用于提取消息的报价和签名。

网址和网络地址操作

解析/修改网址和网络地址库。

  • URL
    • furl – 一个小的Python库,使得操纵URL简单化。
    • purl – 一个简单的不可改变的URL以及一个干净的用于调试和操作的API。
    • urllib.parse – 用于打破统一资源定位器(URL)的字符串在组件(寻址方案,网络位置,路径等)之间的隔断,为了结合组件到一个URL字符串,并将“相对URL”转化为一个绝对URL,称之为“基本URL”。
    • tldextract – 从URL的注册域和子域中准确分离TLD,使用公共后缀列表。
  • 网络地址
    • netaddr – 用于显示和操纵网络地址的Python库。

 

网页内容提取

提取网页内容的库。

  • HTML页面的文本和元数据
    • newspaper – 用Python进行新闻提取、文章提取和内容策展。
    • html2text – 将HTML转为Markdown格式文本。
    • python-goose – HTML内容/文章提取器。
    • lassie – 人性化的网页内容检索工具
    • micawber – 一个从网址中提取丰富内容的小库。
    • sumy -一个自动汇总文本文件和HTML网页的模块
    • Haul – 一个可扩展的图像爬虫。
    • python-readability – arc90 readability工具的快速Python接口。
    • scrapely – 从HTML网页中提取结构化数据的库。给出了一些Web页面和数据提取的示例,scrapely为所有类似的网页构建一个分析器。
  • 视频
    • youtube-dl – 一个从YouTube下载视频的小命令行程序。
    • you-get – Python3的YouTube、优酷/ Niconico视频下载器。
  • 维基
    • WikiTeam – 下载和保存wikis的工具。

WebSocket

用于WebSocket的库。

  • Crossbar – 开源的应用消息传递路由器(Python实现的用于Autobahn的WebSocket和WAMP)。
  • AutobahnPython – 提供了WebSocket协议和WAMP协议的Python实现并且开源。
  • WebSocket-for-Python – Python 2和3以及PyPy的WebSocket客户端和服务器库。

DNS解析

  • dnsyo – 在全球超过1500个的DNS服务器上检查你的DNS。
  • pycares – c-ares的接口。c-ares是进行DNS请求和异步名称决议的C语言库。

计算机视觉

  • OpenCV – 开源计算机视觉库。
  • SimpleCV – 用于照相机、图像处理、特征提取、格式转换的简介,可读性强的接口(基于OpenCV)。
  • mahotas – 快速计算机图像处理算法(完全使用 C++ 实现),完全基于 numpy 的数组作为它的数据类型。

代理服务器

  • shadowsocks – 一个快速隧道代理,可帮你穿透防火墙(支持TCP和UDP,TFO,多用户和平滑重启,目的IP黑名单)。
  • tproxy – tproxy是一个简单的TCP路由代理(第7层),基于Gevent,用Python进行配置。

其他Python工具列表


展开阅读全文

没有更多推荐了,返回首页