论文|SDNE的算法原理、代码实现和在阿里凑单场景中的应用说明(附代码)

1、概述

SDNE(Structural Deep Network Embedding)算法是发表在KDD-2016上的一篇文章,论文的下载地址为:

https://www.kdd.org/kdd2016/papers/files/rfp0191-wangAemb.pdf

SDNE主要也是用来构建node embedding的,和之前介绍的node2vec发表在同年,但不过node2vec可以看作是deepwalk的扩展,而SDNE可以看作是LINE的扩展。

2、算法原理

SDNE和LINE中相似度的定义是一致的,同样是定义了一阶相似度和二阶相似度,一阶相似度衡量的是相邻的两个顶点对之间相似性,二阶相似度衡量的是,两个顶点他们的邻居集合的相似程度。

模型结构 如下:

SDNE模型结构

模型主要包括两个部分:无监督和有监督部分,其中:

  • 无监督部分是一个深度自编码器用来学习二阶相似度(上图中两侧部分)

  • 监督部分是一个拉普拉斯特征映射捕获一阶相似度(中间的橘黄色部分)

对于一阶相似度,损失函数定义如下:

该损失函数可以让图中的相邻的两个顶点对应的embedding vector在隐藏空间接近。

论文中还提到一阶相似度的损失函数还可以表示为:

其中:

  • 是图对应的拉普拉斯矩阵

  • 是图中顶点对应的度矩阵, 是邻接矩阵,

拉普拉斯矩阵是「图论」中重要的知识点,可以参考:

https://blog.csdn.net/qq_30159015/article/details/83271065

对于二阶相似度,损失函数定义如下:

这里使用图的邻接矩阵进行输入,对于第 个顶点,有 ,每一个 都包含了顶点 的邻居结构信息,所以这样的重构过程能够使得结构相似的顶点具有相似的embedding表示向量。

但是现实中由于图都是稀疏的,邻接矩阵 中的非零元素是远远少于零元素的,那么对于神经网络来说只要全部输出0也能取得一个不错的效果,这不是我们想要的。为了解决这个问题,论文提出一种使用带权损失函数,对于非零元素具有更高的惩罚系数。修正后的损失函数为:

其中:

  • 为逐元素积

  • ,若 ,则 ,否则

模型整体的优化目标为:

其中:

  • 为正则项, 为控制一阶损失的参数, 为控制正则化项的参数

3、实验

实验部分主要就是为了验证SDNE的效果要比其他的模型好,因此作者在5个数据集中进行了实验,分别为:

  • BLOGCATALOG

  • FLICKR

  • YOUTUBE

  • ARXIV GR-QC

  • 20-NEWSGROUP

这里选取的对比模型包括:

  • Deepwalk

  • LINE

  • GraRep

  • Laplacian Eigenmaps (LE)

  • Common Neighbor

实验评估的指标为:

  • precision@k:top k的精确度

  • Mean Average Precision (MAP):平均误差

  • Macro-F1:区分类别的F1-Score

  • Micro-F1 :不区分类别的F1-Score

Macro-F1和Micro-F1区别参考:https://zhuanlan.zhihu.com/p/64315175

4、代码实现

代码实现部分可以参考:https://github.com/xiaohan2012/sdne-keras

其中关于SDNE模型的定义部分为:

class SDNE():
    def __init__(self,
                 graph,
                 encode_dim,
                 weight='weight',
                 encoding_layer_dims=[],
                 beta=2, alpha=2,
                 l2_param=0.01):
        """graph: nx.Graph
        encode_dim: int, length of inner most dim
        beta: beta parameter under Equation 3
        alpha: weight of loss function on self.edges
        """
        self.encode_dim = encode_dim

        ###################
        # GRAPH STUFF
        ###################

        self.graph = graph
        self.N = graph.number_of_nodes()
        self.adj_mat = nx.adjacency_matrix(self.graph).toarray()
        self.edges = np.array(list(self.graph.edges_iter()))

        # weights
        # default to 1
        weights = [graph[u][v].get(weight, 1.0)
                   for u, v in self.graph.edges_iter()]
        self.weights = np.array(weights, dtype=np.float32)[:, None]

        if len(self.weights) == self.weights.sum():
            print('the graph is unweighted')
        
        ####################
        # INPUT
        ####################

        # one end of an edge
        input_a = Input(shape=(1,), name='input-a', dtype='int32')
        # the other end of an edge
        input_b = Input(shape=(1,), name='input-b', dtype='int32')
        edge_weight = Input(shape=(1,), name='edge_weight', dtype='float32')

        ####################
        # network architecture
        ####################
        encoding_layers = []
        decoding_layers = []
        
        embedding_layer = Embedding(output_dim=self.N, input_dim=self.N,
                                    trainable=False, input_length=1, name='nbr-table')
        # if you don't do this, the next step won't work
        embedding_layer.build((None,))
        embedding_layer.set_weights([self.adj_mat])
        
        encoding_layers.append(embedding_layer)
        encoding_layers.append(Reshape((self.N,)))
        
        # encoding
        encoding_layer_dims = [encode_dim]

        for i, dim in enumerate(encoding_layer_dims):
            layer = Dense(dim, activation='sigmoid',
                          kernel_regularizer=regularizers.l2(l2_param),
                          name='encoding-layer-{}'.format(i))
            encoding_layers.append(layer)

        # decoding
        decoding_layer_dims = encoding_layer_dims[::-1][1:] + [self.N]
        for i, dim in enumerate(decoding_layer_dims):
            if i == len(decoding_layer_dims) - 1:
                activation = 'sigmoid'
            else:
                # activation = 'relu'
                activation = 'sigmoid'
            layer = Dense(
                dim, activation=activation,
                kernel_regularizer=regularizers.l2(l2_param),
                name='decoding-layer-{}'.format(i))
            decoding_layers.append(layer)
        
        all_layers = encoding_layers + decoding_layers

        ####################
        # VARIABLES
        ####################
        encoded_a = reduce(lambda arg, f: f(arg), encoding_layers, input_a)
        encoded_b = reduce(lambda arg, f: f(arg), encoding_layers, input_b)

        decoded_a = reduce(lambda arg, f: f(arg), all_layers, input_a)
        decoded_b = reduce(lambda arg, f: f(arg), all_layers, input_b)
        
        embedding_diff = Subtract()([encoded_a, encoded_b])

        # add weight to diff
        embedding_diff = Lambda(lambda x: x * edge_weight)(embedding_diff)

        ####################
        # MODEL
        ####################
        self.model = Model([input_a, input_b, edge_weight],
                           [decoded_a, decoded_b, embedding_diff])
        
        reconstruction_loss = build_reconstruction_loss(beta)

        self.model.compile(optimizer='adadelta',
                           loss=[reconstruction_loss, reconstruction_loss, edge_wise_loss],
                           loss_weights=[1, 1, alpha])
                           
        self.encoder = Model(input_a, encoded_a)

        # for pre-training
        self.decoder = Model(input_a, decoded_a)
        self.decoder.compile(optimizer='adadelta',
                             loss=reconstruction_loss)

    def pretrain(self, **kwargs):
        """pre-train the autoencoder without edges"""
        nodes = np.arange(self.graph.number_of_nodes())
        node_neighbors = self.adj_mat[nodes]
                
        self.decoder.fit(nodes[:, None],
                         node_neighbors,
                         shuffle=True,
                         **kwargs)

    def train_data_generator(self, batch_size=32):
        # this can become quadratic if using dense
        m = self.graph.number_of_edges()
        while True:
            for i in range(math.ceil(m / batch_size)):
                sel = slice(i*batch_size, (i+1)*batch_size)
                nodes_a = self.edges[sel, 0][:, None]
                nodes_b = self.edges[sel, 1][:, None]
                weights = self.weights[sel]
                
                neighbors_a = self.adj_mat[nodes_a.flatten()]
                neighbors_b = self.adj_mat[nodes_b.flatten()]

                # requires to have the same shape as embedding_diff
                dummy_output = np.zeros((nodes_a.shape[0], self.encode_dim))

                yield ([nodes_a, nodes_b, weights],
                       [neighbors_a, neighbors_b, dummy_output])

    def fit(self, log=False, **kwargs):
        """kwargs: keyword arguments passed to `model.fit`"""
        if log:
            callbacks = [keras.callbacks.TensorBoard(
                log_dir='./log', histogram_freq=0,
                write_graph=True, write_images=False)]
        else:
            callbacks = []

        callbacks += kwargs.get('callbacks', [])
        if 'callbacks' in kwargs:
            del kwargs['callbacks']

        if 'batch_size' in kwargs:
            batch_size = kwargs['batch_size']
            del kwargs['batch_size']
            gen = self.train_data_generator(batch_size=batch_size)
        else:
            gen = self.train_data_generator()

        self.model.fit_generator(
            gen,
            shuffle=True,
            callbacks=callbacks,
            pickle_safe=True,
            **kwargs)
        
    def get_node_embedding(self):
        """return the node embeddings as 2D array, #nodes x dimension"""
        nodes = np.array(self.graph.nodes())[:, None]
        return self.encoder.predict(nodes)

    def save(self, path):
        self.model.save(path)

5、应用

以下内容参考:

https://developer.aliyun.com/article/419706

SDNE算法主要应用是电商场景的「凑单」,比如在618、双十一这样的场景中会有满200-30这样的场景,当用户加购的商品不足200时,会进行提示凑单。

其主要流程为:

  • 基于用户购买行为构建graph,节点:商品,边:商品间同时购买的行为,权重:同时购买的比重,可以是购买次数、购买时间、金额等feature

  • 基于权重Sampling(weighted walk)作为正样本的候选,负样本从用户非购买行为中随机抽样

  • embedding部分将无监督模型升级成有监督模型,将基于weighted walk采出来的序,构造成item-item的pair对,送给有监督模型(DNN)训练

  • 依据产出的embedding,计算item之间的相似度,生成item 的相似 item list

5.1、算法流程

整体算法的架构图为:

算法流程
5.1.1、构建Graph

上文提到,我们要挖掘商品间共同购买的关系(bundle mining),类似买了又买的问题,所以,我们构建的graph是带权重的商品网络,节点:商品,边:商品间共同购买的关系,权重:共同购买次数、购买时间。

构建Graph
5.1.2、Sampling

传统的方法,比如deep walk,它的Sampling本质上是有两部分,首先,通过random walk的方式进行游走截断,其次,在仍给word2vec中Skip-Gram模型进行embedding之前,用negative sampling的方式去构造样本;这种随机采样的方法会大概率的将热门节点采集为负样本,这种方式适用于语言模型,因为在自然语言中,热门的单词均为无用单词(比如he、she、it、is、the)。对于我们的商品网络,刚好相反,热门商品往往是最重要的样本,如果采用negative sampling的方式去构造样本,模型肯定是学不出来。因此,我们基于边的权重去采样(weighted walk),使采样尽量往热门节点方向游走,以下图为例:

Sample

举个例子来说,假设游走2步,从节点A出发,随机取下一个邻居节点时,如果是random walk算法,它会等概率的游走到B或C节点,但是我们的算法会以7/8的概率取节点C,再会以8/12的概率游走到节点D,最终很大概率上会采出来一条序walk=(A,C,D),对于原始graph,A和D是没有关联的,但是通过weighted walk,能够有效的挖掘出A和D的关系,算法详见:

算法流程
5.1.3、Embedding

上一部分介绍了如何构建了带权重的概率图,基于带权重的采样(weighted walk)作为正样本的候选,负样本从用户非购买行为中随机抽样;这一部分主要介绍embedding的部分,将基于weighted walk采出来的序,构造成item-item的pair对,送给embedding模型,我们构造了一个有监督embedding模型(DNN),规避无监督模型无法离线评估模型效果的问题。模型结构如下图。

Embedding产生

5.2、实现

5.2.1、离线

a)训练:离线模型在PAI平台上用tensorflow框架实现,抽取了历史50天的全网成交数据,大概抽取3000万节点,构建的graph,在odps graph平台做完weighted walk,产出2亿条样本,也就是item-item的pair对,训练至收敛需要2小时的时间

b)预测:从全网所有行为中,随机抽取几十亿条pair对,去做预测,给每对item pair预测一个score

c)上线:对每个种子商品取topN的bundle商品,打到搜索引擎的倒排和正排字段,从qp中取出每个用户的种子商品,基于倒排字段召回bundle商品,基于正排字段做bundle排序

5.2.2、实时

用户购买行为,日常和大促差异很大,为了能够实时的捕获用户实时行为,我们在porsche上建了一套实时计算bundle mining的流程:

a)数据预处理:在porsche上对用户实时日志进行收集,按离线的数据格式处理成实时的数据流

b)Sampling:发送给odps graph实时计算平台,构建graph,做weighted walk,生成序,再通过swift消息发出

c)Embedding:在porsche上做DNN模型训练和实时预测

d)数据后处理:计算item的topN的bundle item list,实时写到dump和引擎

更多干货请点击:

如何利用NLP与知识图谱处理长句理解?【免费下载】2021年6月热门报告盘点&下载【干货】电商知识图谱构建及搜索推荐场景下的应用DTC模式如何引领消费品牌企业实现创新.pdf(附下载链接)【干货】营销拓客思维导图24式.pdf比电影刺激多了,警匪大战,记录仪真实镜头!某视频APP推荐策略详细拆解(万字长文)

华为到底在研发怎样的核心技术?

2020年轻人性和爱调查报告.pdf(附下载链接)

【86年高清视频】西游记剧组春节晚会

【视频】未来10年,普通人的赚钱机会在哪里?

关注我们

省时查报告

专业、及时、全面的行研资料库

长按并识别关注

您的「在看」,我的动力 ????
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值