WangMeow --- ᶘ ᵒᴥᵒᶅ ฅ^•ﻌ•^ฅ

欲穷算法千里目,更上编程一层楼!

【ACM-ICPC 2018 焦作赛区网络预赛】L. Poor God Water ---- 矩阵快速幂 or 杜教BM算法

题目传送门 做法: 我们设(肉,鱼,巧) —> (0,1,2) f(i,j,k) i表示第i小时,j表示当前状态,k表示上一状态 j,k ∈\in∈ (0,1,2) 从n = 3 开始,我们利用后两项推前一项可得 f(i,0,0)=f(i−1,0,1)...

2018-10-26 22:19:26

阅读数:14

评论数:0

【ACM-ICPC 2018 南京现场赛 】 J.Prime Game ---- 思维+素数筛

题目: 做法: 计算出来每个数的质因子在各个区间的贡献。 以第二组样例为例: 第一个元素的素因子2: 它能贡献的区间有[1,1],[1,2],……,[1,10] 10个区间 第一个元素的素因子3: 它能贡献的区间有[1,1],[1,2],……,[1,10] 10个区间 当前sum = 1...

2018-10-22 17:47:45

阅读数:52

评论数:0

Codeforces Round #454 (Div. 1) D. Power Tower ---- 广义欧拉定理降幂★

公式: 注意:比较大小以及使用map记忆化欧拉函数值,否则会WA or TLE 自定义Mod,这种写法,会在快速幂中自行判断大小,比较无脑 AC代码: #include<bits/stdc++.h> #define IO i...

2018-10-07 10:20:55

阅读数:86

评论数:0

[Codeforces-Gym] (101550E)Exponial ---- 广义欧拉定理降幂★

题目传送门   自己天真以为无法互质就没有办法降幂,其实还有广义欧拉定理!QAQ a^b mod c = a^(b mod phi(c) + phi(c))  相关知识及其证明:求幂大法(广义欧拉定理)及其证明 AC代码: #include<bits/st...

2018-10-06 21:58:18

阅读数:160

评论数:0

[HDU](5514)Frogs ---- 技巧容斥原理★

题目传送门 Hint: 2015ACM/ICPC亚洲区沈阳站 总结: 指数型的容斥一定会超时……TLE到哭 无可奈何只好赛后去看了题解,才发现容斥才可这样写 重点是用vis[i]-num[i]来求m所有因子的对结果贡献(这个真的是很有技巧的想法) AC代码: #include&...

2018-10-02 10:34:53

阅读数:33

评论数:0

Codeforces Round #511 (Div. 2) C. Enlarge GCD ---- 思维+素数筛

题目传送门 题意: 让你删除一些数,使得剩余数的gcd尽可能大。 做法: 这里需要用思维想一下(`・ω・´) 我们先求出原来n个数的gcd,我们把每个数除以这个gcd得到的新的n个数他们有什么特征嘞? 对,他们这n个数,没有公因子了,但是两个数之间,三个数之间……都还可能存在它们的公因子...

2018-09-22 22:18:25

阅读数:67

评论数:1

Codeforces Round #463 (Div. 1 + Div. 2, combined) C. Permutation Cycle ---- 思维+扩展欧几里得

题目传送门 做法: 题目中给的函数式递归定义的,递归终点是j为min时 f(i,j) = i 我们从样例中要规律,发现每个点都有某个确定的周期里面。 比如 6 5 8 3 4 1 9 2 7 6 ----> 1   1-----> 6 周期为2...

2018-09-21 17:13:38

阅读数:22

评论数:0

【ACM-ICPC 2018 焦作赛区网络预赛】G题Give Candies ---- 费马小定理优化快速幂+模拟大数取模

题目链接 做法: 一、优化快速幂:前提p为质数, gcd(a,p) = 1 对于计算a^b % p 可优化: a^b % p = a^(b%(p-1))%p 证明:设b = kp+x a^b % p = a^(kp+x) % p = a^kp * a^x mod p 由费马小定理a^...

2018-09-16 20:20:44

阅读数:14

评论数:0

[牛客]Wannafly挑战赛22 A.计数器 ---- 裴蜀定理+扩展欧几里得

题目任意门 做法: 裴蜀定理:若a,b是整数,且(a,b)=d,那么对于任意的整数x,y,ax+by=k中的k一定是d的倍数。 现在我们知道n个数,a1,a2,a3,……,an。我们把他们通过gcd联系起来 设gcd(a1,a2,a3,……,an) = p 那么一定存在一组解k1,k2,...

2018-09-12 19:58:14

阅读数:24

评论数:0

【ACM-ICPC 2018 南京赛区网络预赛】J题 Sum ---- 积性函数线性筛+思维★

题目链接 做法: 通过打表找规律,我们发现所有情况可以分为三类。我们把一个n 设为 n = p^k * x (p为质数),这里的x可能为质数也可能为合数 注:如果x与p互质,满足积性函数的性质,f[n] = f[p]*f[x] 筛法: 1.f[p] = 2 ,f[p^2] = 1 2....

2018-09-03 21:16:48

阅读数:28

评论数:3

[UPC](5222)Sum of the Line ---- 容斥原理★

题目链接 Hint: ACM-ICPC 2017 Asia Urumqi: K. Sum of the Line 做法:通过打表或手写,我们很容易发现,第k行的S就是gcd(x,k) = x 的平方和 当k为奇数时,我们可以直接利用   1^2 +2^2 +3^2 +4^2 +...+n^2...

2018-08-25 22:08:18

阅读数:25

评论数:0

[HDU](1695)GCD ---- 欧拉函数★ + 容斥原理★

题目链接 感慨:发现欧拉函数真的在数论中非常容易用到,它真的不仅仅是它定义的那样简单,它有很多妙用! 做法:题意向我们保证a = c =1; 所谓问题就变成了 有多少对(x,y)使得gcd(x,y) = k 并且x ∈[1, b], y ∈ [1, d] 利用欧拉函数思想,可以把gcd(x...

2018-08-18 22:18:05

阅读数:40

评论数:0

[HDU](6390)GuGuFishtion ---- 欧拉函数★ + 容斥原理

题目链接 做法: 首先根据唯一分解定理可知道,每个正整数都可以分解成质数幂的成绩 然后我们带入到原式中去 (原谅我的字不好看(T▽T)) 我们就可以推出结论 听了dls的直播讲解后,说一下我的理解: 我们知道原暴力求答案复杂度是O(n*m) 但是转换成结论后,我们可以...

2018-08-17 15:00:58

阅读数:21

评论数:0

[BZOJ](2818)Gcd ---- 欧拉函数★

题目链接 做法:与UVA11426的原理相同,这里就不细说了,因为几乎一模一样。这个题让我们求满足1<=x,y<=n 在[1,n] 这个区间里面gcd(x,y) = 素数的个数 所以我们可以打一个素数表,去枚举它们的倍数的n 来求满足 gcd(x/i...

2018-08-15 21:46:19

阅读数:28

评论数:0

[UVA](11426)GCD - Extreme (II) ---- 欧拉函数★

题目链接 做法:题意很清晰,但是肯定不可以像题中的代码一样暴力求。 看了刘汝佳老师的紫书,对这道题的求解感叹! 说一下自己的理解: for(int i=1;i<=n;i++) for(int j=i+1;j<=n;j++) ...

2018-08-15 09:51:30

阅读数:27

评论数:0

[JXOI2018]游戏 ---- 排列组合计数+筛法

题目描述 九条可怜是一个热爱游戏的女孩子,她经常在网上和一些网友们玩一款叫做《僵尸危机》游戏。 在这款游戏中,玩家们会需要在成为僵尸之前与黑恶势力斗智斗勇,逃离被病毒感染的小岛。但是黑恶势力不会让玩家轻易得逞,他会把一些玩家抓走改造成僵尸。变成僵尸的玩家会攻击其他的玩家,被攻击的玩家会被”感染”...

2018-08-05 09:19:58

阅读数:43

评论数:0

[HDU](6333)Problem B. Harvest of Apples ---- 数论+莫队算法

Problem Description There are n apples on a tree, numbered from 1 to n. Count the number of ways to pick at most m apples.   Input The first line...

2018-08-03 22:43:59

阅读数:21

评论数:0

[LightOJ](1236)Pairs Forming LCM ---- 唯一分解定理(质因数分解)

Find the result of the following code: long long pairsFormLCM( int n ) { long long res = 0; for( int i = 1; i <= n; i++ ) ...

2018-06-22 19:39:47

阅读数:41

评论数:0

[UVA](10200)Prime Time ---- 前缀和+素数

Euler is a well-known matematician, and, among many other things, he discovered that the formula n 2 + n + 41 produces a prime for 0 ≤ n &l...

2018-06-07 19:51:59

阅读数:28

评论数:0

[LightOJ](1370)Bi-shoe and Phi-shoe ---- 欧拉函数与素数筛(规律)

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for hi...

2018-06-04 19:30:16

阅读数:27

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭