WangMeow --- ᶘ ᵒᴥᵒᶅ ฅ^•ﻌ•^ฅ

欲穷算法千里目,更上编程一层楼!

[HDU](6395)Sequence ---- 矩阵快速幂+分块

题目链接 做法:一开始推出了和正确题解一样的基础矩阵,可是自己想的太局限,没有想到分块的思想。还是缺乏练习呀! 具体做法,就是我们先把一部分的用O(1)的递推式计算好,然后后面的按照每相同的p/n 进行分块,然后这样就不会错了。  参考题解:https://www.cnblogs.com/D...

2018-08-13 23:04:54

阅读数:14

评论数:0

Codeforces Round #501 (Div. 3) ---- B. Obtaining the String (冒泡排序)

题目链接 做法:固定住S2串的位置,然后从S2的每i个位置找S1串中与i位置对应的字符,找到了,与前面的交换(冒泡一次)。 蒟蒻…… AC代码: #include<bits/stdc++.h> #define rep(i,s,t) for(in...

2018-08-13 09:59:59

阅读数:7

评论数:0

[洛谷](P1631)序列合并 ---- 优先级队列+思维

题目链接 思路: 我们会发现题意要求的是最小的N个数,1e5直接暴力肯定会TLE。 这时候换种思路。 我们把a和b两个序列从小到大排序, 发现一定是a[i]+b[j] < a[i]+b[j+1] 所以可以用优先级队列维护一下 枚举一下,把大和的弹出去,否则从内层跳...

2018-08-10 19:20:20

阅读数:9

评论数:0

[AtCoder](3621)Small Multiple ---- 思维+BFS

Problem Statement Find the smallest possible sum of the digits in the decimal notation of a positive multiple of K. Constraints 2≤K≤105 K is an i...

2018-08-06 10:17:39

阅读数:33

评论数:0

[AtCoder](2697)Coloring Dominoes ---- 思维(规律)

题目链接 思路: 一开始知道这应该是道找规律的题目,但是想的特别复杂,考虑了很多情况。但是在以前杭电做过一道很简单的递推,就想起来可以把这种模型转换成两种情况。 第一种情况:一个竖的多米诺,这里简称为X 第二种情况:两个横着叠在一起的多米诺,这里简称为Y 第一种情况涂颜色有3种 第二种情...

2018-07-28 15:21:48

阅读数:20

评论数:0

[51Nod](1596)搬货物 ---- 思维

现在有n个货物,第i个货物的重量是 2^wi 。每次搬的时候要求货物重量的总和是一个2的幂。问最少要搬几次能把所有的货物搬完。 样例解释: 1,1,2作为一组。 3,3作为一组。 Input 单组测试数据。 第一行有一个整数n (1≤n≤10^6),表示有几个货物。 第二行有n个整数...

2018-04-16 19:51:11

阅读数:15

评论数:0

[51Nod](1413)权势二进制(Codeforces Round #300 B. Quasi Binary) ---- 思维+贪心

一个十进制整数被叫做权势二进制,当他的十进制表示的时候只由0或1组成。例如0,1,101,110011都是权势二进制而2,12,900不是。 当给定一个n的时候,计算一下最少要多少个权势二进制相加才能得到n。 Input 单组测试数据。 第一行给出一个整数n (1&lt...

2018-04-10 13:23:47

阅读数:12

评论数:0

[51Nod](1087) 1 10 100 1000 ---- 模拟+STL(map)

1,10,100,1000…组成序列1101001000…,求这个序列的第N位是0还是1。 Input 第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000) 第2 - T + 1行:每行1个数N。(1 &...

2018-03-20 21:10:17

阅读数:20

评论数:0

[51Nod](1049)最大子段和 ---- 思维

N个整数组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续子段和的最大值。当所给的整数均为负数时和为0。 例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。 Input 第1行:整数序列的长度N(...

2018-03-15 20:22:51

阅读数:20

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭