作者:Falccm 链接:https://www.zhihu.com/question/45621009/answer/99714353 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。下边所有例子如无特殊说明都是在 2016a 上执行,其他版本或有差异,建议自行测试 1. 可以用 sprintfc 生成 cellstr:
>> a = magic(3);
>> b = sprintfc('%d',a)
b =
'8' '1' '6'
'3' '5' '7'
'4' '9' '2'
2. strfind 可以作用于数值数组用于查找子串的位置:
>> k = strfind([2 7 1 3 0 7 1],[7 1])
k =
2 6
3. 可以用 cell 和 函数句柄实现类似于函数式编程的操作,以 fibonacci 数列为例:
>> f = {@(f,n)1 @(f,n)f{(n>3)+1}(f,n-1) + f{(n>4)+1}(f,n-2)};
>> fib = @(n)f{(n>2)+1}(f,n);
>> fib(20)
ans =
6765
类似的,构建 if 函数:
>> iff = @(varargin)varargin{find([varargin{1:2:end}],1)*2};
>> x = 3;
>> iff(x<1,1,x<2,2,x<3,3,x<4,4,x<5,5)
ans =
4
4. regexprep 当替换字符串为 ${cmd} 动态表达式时 cmd 可以访问调用时的 caller 工作区:
% haha.m
function x = haha
x = str2double(regexprep('1','1','${num2str(y,16)}'));
% command window/命令窗口
>> y = pi;
>> haha % 注意此处调用 haha 函数时并未传入 y 的值
ans =
3.14159265358979
5. 在 2015b 或 2016a 可以启用被隐藏的单一维度拓展:
>> builtin('_useSingletonExpansion',1);
>> (1:3)'+(1:3) % 相当于 bsxfun(@plus, (1:3)', 1:3)
ans =
2 3 4
3 4 5
4 5 6
>> (1:3)'.^(1:3)
% 相当于 bsxfun(@power, (1:3)', 1:3)
ans =
1 1 1
2 4 8
3 9 27
除此之外许多(不是全部)的 bsxfun 用法可以简化为上述形式。这一特性有可能在未来版本中正式发布
6. MATLAB 的一些对象,尤其是图形对象会有一些隐藏属性,这些隐藏属性不能直接看到,但是如果你指定名字的话是可以访问甚至修改的,比方说以 axes 为例,我们可以修改 axes 的 LooseInset 属性改变其默认空隙:
>> figure
>> a = axes;
>> a.LooseInset = [0 0 0 0]; % 老版本用 set(a,'LooseInset',[0 0 0 0])
效果可以自己运行查看,这里效果不是重点就不发图了
如果你用 get(a) 或者 a.get 中只能看到一部分属性,其中并没有 LooseInset。 要想找到类似的隐藏属性当然可以用 metaclass,不过更直接的方法可能是:
>> struct(a) % 此时要确保 a 没有被删除
7. MATLAB 的很多运算符可以被重载,从而实现一些比较方便的功能,之前回答过一个简单应用的例子:matlab中有没有类似R中magrittr包的管道操作? - 知乎用户的回答。
这个应该不能算作奇技淫巧吧,不过知道的人可能少一些
暂时就写这么多吧。还有一些性能方面的,不过感觉那些不算奇技淫巧吧(个人理解是不常见的用法才算(⊙_⊙)?),就不放这里了
----- 2016.5.9 更新 ------
8. builtin('_mergesimpts',...),这个用法这里有介绍:Return Unique Element with a Tolerance,简单来说可以用来合并相近或者相同的数值的
9. anonymousFunction,这个函数功能和 str2func 基本相同,但是他接受两个输入,经过尝试,如果第二个输入是 'base' 的话不管该函数在哪里调用都可以利用 base 工作区中的变量构建匿名函数:
% haha.m
function f = haha
f = anonymousFunction('@(x)sin(a*x)','base');
>> a = 2;
>> f = haha; % 此处并未传入 a
>> f(3)==sin(2*3)
ans =
1
10. ismembc ,ismembc2 和 builtin('_ismemberhelper',...)
这三个函数都是对有序数组进行二分查找,第一个返回逻辑判断值,第二个返回元素在有序数组中的位置(如果有重复的就返回最后一次出现的位置),第三个可以返回上述两个参数(不过第二个是返回首次出现的位置),举例说明:
>> ismembc([1 3 5],[0 1 1 5 7])
ans =
1 0 1
>> ismembc2([1 3 5],[0 1 1 5 7])
ans =
3 0 4
>> [in,loc] = builtin('_ismemberhelper',[1 3 5],[0 1 1 5 7])
in =
1 0 1
loc =
2 0 4
需要注意的是,如果第二个输入不是单调递增不会报错,但是结果是错误的。同时,由于是二分查找,所以要比线性查找 find(x==y,1) 或者 find(x==y,1,'last') 快很多;顺便说一下,如果是行向量的话 strfind(x,y) 通常也要比 find(x==y) 要快一些,两者都是线性查找,不需要有序的 x。
----- 2016.5.10 更新 ------
11. numel 函数可以接受多个参数的,作用可以从例子中看出:
>> a = rand(3,4,5,6);
>> numel(a,1,':',1,':')
ans =
24
这相当于:
numel(a(1,:,1,:))
不过由于后者需要先索引矩阵,所以需要的时间较长(且索引的部分越大越长):
>> a = rand(1e3,1e3,10);
>> timeit(@()numel(a,':',':',1))
警告: 由于运行速度过快,F 的计时可能不准确。尝试对耗时更长的其他对象计时。
> In timeit (line 158)
ans =
9.08076504322897e-07
>> timeit(@()numel(a(:,:,1)))
ans =
0.00272672929522135
当然啦,就算不知道第一种用法一般也不会有人用第二种用法,完全可以用 size 函数的结果计算
12. cellfun(函数名,....),函数名可以是以下几个字符串:
isempty, islogical, isreal, length, ndims, prodofsize,size, isclass
其用法在 cellfun 的文档中 Backward Compatibility 有介绍,其实功能都很简单,但是好处是他们比对应的函数句柄要快很多:
>> a = repmat({[],'1';23,23},100);
>> timeit(@()cellfun('isempty',a))
ans =
0.000205790268896228
>> timeit(@()cellfun(@isempty,a))
ans =
0.0268502837700468
13. profile 的 memory 参数,举例说明:
% haha.m
a = rand(3000);
b = a;
b(1) = a(1);
然后 profile 该函数:
>> profile -memory on, haha, profile viewer
&amp;lt;img src="https://pic1.zhimg.com/50/37dc0f0b10742d8c5521f94beb61c4b7_hd.jpg" data-rawheight="217" data-rawwidth="915" class="origin_image zh-lightbox-thumb" width="915" data-original="https://pic1.zhimg.com/37dc0f0b10742d8c5521f94beb61c4b7_r.jpg"&amp;gt;
可以看到除了原有的运行时间数据之外还多了内存数据,而且就这个例子而言,我们可以清楚地看到 MATLAB 的 copy-on-write 特性,不过这里统计的应该只是在 MATLAB 的内存管理范围内的内存使用情况,实际计算中有些内存开销并不是由 MATLAB 管理,所以不会被记录。(profile 还有一些其他的隐藏特性,更详细的介绍可以参见 Undocumented Matlab 中的介绍)
14. 可以在 MATLAB 中使用 Java:
>> java.math.BigInteger(2).pow(100)
ans =
1267650600228229401496703205376
由于 MATLAB 的界面主要由 java 编写,所以可以用 java 来丰富 MATLAB 的 GUI 功能。
此外,如果是 Windows 的话还可以使用 C#;另外最近几个版本也可以使用 python(需要自行安装 python)。
15. 我们知道新版本(2014b开始)的图形界面有较大改动,其中一个改动就是可以用点运算符直接操作和修改图形对象的属性,例如:
>> a = uitable('data',magic(3));
如果要修改其中 2 行 2 列的元素为 0,老版本的话估计要这么写:
>> t = get(a,'data'); t(2,2) = 0; set(a,'data',t);
新版本写起来就方便些:
>> a.Data(2,2) = 0;
不过如果想在老版本上也这么方便的修改属性值的话,需要对创建 a 的语句稍作修改:
>> a = handle(uitable('data',magic(3)));
这里得到的 a 不再是一个数值句柄,可以直接用新版本的方法修改属性
----- 2016.5.12 更新 ------
16. 可以用 sort 输出的索引来生成多组随机排序(或者不放回取样):
tic
for i = 1e4:-1:1
a(:,i) = randperm(50);
end
toc
tic
[~,b] = sort(rand(50,1e4,'single'));
toc
时间已过 0.032115 秒。
时间已过 0.015228 秒。
这里 a 和 b 都是 10000 组 1:50 的随机排序
17. 直接看例子:
>> zeros(5,0)*zeros(0,3)
ans =
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
18. 在一些情况下,数据满足要求且硬盘足够, v6 模式存取数据比较快:
function test
a = rand(5000);
tic; save data1 a, toc
tic; save data2 a -v6, toc
tic, c = load('data1'); toc
tic, d = load('data2'); toc
isequal(c,d)
时间已过 4.374425 秒。
时间已过 1.881225 秒。
时间已过 1.052394 秒。
时间已过 0.088677 秒。
19. 用 fft 加速两个较长数组的卷积运算,这个算不上 MATLAB 的奇技淫巧,而是数学上的结论:
function test
a = rand(1,2e5);
b = rand(1,3e5);
tic, c = conv(a,b); toc
tic, l = numel(a) + numel(b) - 1; d = ifft(fft(a,l).*fft(b,l)); toc
tic, l = numel(a) + numel(b) - 1; n = 2.^nextpow2(l);
e = ifft(fft(a,n).*fft(b,n)); e = e(1:l); toc
norm(c-d), norm(c-e)
时间已过 4.580655 秒。
时间已过 0.051598 秒。
时间已过 0.030744 秒。
ans =
2.79282382379074e-07
ans =
2.78964931183402e-07
----- 2016.5.13 更新 ------
20. 更快的随机数生成
function test
rng('default')
tic, a = rand(3e3); toc
rng(0,'simdTwister')
tic, b = rand(3e3); toc
时间已过 0.077385 秒。
时间已过 0.030155 秒。
可以把 rng(0,'simdTwister') 写在启动文件中
21. 有时候 floor 比 mod 更快的
function test
a = randi(1e6,1e6,1);
timeit(@()mod(a,3)) % 0.0266399306685575
timeit(@()a-3*floor(a/3)) % 0.0066731423625292
22. 逻辑数组和标量用.*
function test
a = rand(1e7,1);
timeit(@()2*(a<.5) + 3*(a>.6)) % 0.136814992133285
timeit(@()2.*(a<.5) + 3.*(a>.6)) % 0.0661509763579439
23. 逻辑索引
function test
a = rand(1e7,1);
b = a; b(1) = b(1);
tic, a(a<.5) = a(a<.5) + 1; toc % 时间已过 0.221105 秒。
tic, b = b + (b<.5); toc % 时间已过 0.049953 秒。
659

被折叠的 条评论
为什么被折叠?



