(我怕忘了这好资源)
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld。 技术交流QQ群:433250724,欢迎对算法、机器学习技术感兴趣的同学加入。
以下是我利用业余时间在自己博客中写的文章,主要是一些基础、经典算法的整理,目的一方面是为了科普机器学习技术,让更多同学可以知道什么是机器学习;另外一方面也是督促自己在工作之余还可以抽时间学习知识,温故知新,以备查用。本文会不断更新。如果大家想看什么算法的整理,可以在本文后面留言,我有时间就写。
注:有一部分blog中的图片或者公式来源于一些优质的网络资源,我基本都会有引用;毕竟我只是做知识的整理而非商业目的,如有疏漏请与指正。另外,鉴于本人水平有限,难免会有很多地方写的不对,大家可以在相应文章末尾留言指正,谢谢!
基础入门知识整理
深度学习/机器学习入门基础数学知识整理(一):线性代数基础,矩阵,范数等
深度学习/机器学习入门基础数学知识整理(二):梯度与导数,矩阵求导,泰勒展开等
深度学习/机器学习入门基础数学知识整理(三):凸优化基础,Hessian矩阵,牛顿法等
深度学习/机器学习入门基础数学知识整理(四):拟牛顿法、BFGS、L_BFDS、DFP、共轭梯度法
深度学习/机器学习入门基础数学知识整理(五):Jensen不等式简单理解,共轭函数,共轭梯度法
机器学习方法系列
机器学习方法:回归(一):线性回归Linear regression
机器学习方法:回归(二):稀疏与正则约束ridge regression,Lasso
机器学习方法:回归(三):最小角回归Least Angle Regression(LARS),forward stagewise selection
机器学习方法(四):决策树Decision Tree原理与实现技巧
机器学习方法(五):逻辑回归Logistic Regression,Softmax Regression
机器学习方法(六):随机森林Random Forest,bagging
机器学习方法(七):Kmeans聚类K值如何选,以及数据重抽样方法Bootstrapping
机器学习方法(八):随机采样方法整理(MCMC、Gibbs Sampling等)
自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第一部分
自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第二部分
自组织神经网络介绍:自组织特征映射SOM(Self-organizing feature Map),第三部分
深度学习方法系列
深度学习方法:受限玻尔兹曼机RBM(一)基本概念
深度学习方法:受限玻尔兹曼机RBM(二)网络模型
深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling
深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD
深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
深度学习方法(六):神经网络weight参数怎么初始化
深度学习方法(七):最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!
深度学习方法(八):自然语言处理中的Encoder-Decoder模型,基本Sequence to Sequence模型
深度学习方法(九):自然语言处理中的Attention Model注意力模型
深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling
深度学习方法(十一):卷积神经网络结构变化——Google Inception V1-V4,Xception(depthwise convolution)
深度学习方法(十二):卷积神经网络结构变化——Spatial Transformer Networks
深度学习方法(十三):卷积神经网络结构变化——可变形卷积网络deformable convolutional networks
深度学习方法(十四):轻量级CNN网络设计——MobileNet,ShuffleNet
三十分钟理解系列
三十分钟理解博弈论“纳什均衡” – Nash Equilibrium
《微微一笑很倾城》中肖奈大神说的平方根倒数速算法是什么鬼?三十分钟理解!
三十分钟理解计算图上的微积分:Backpropagation,反向微分
[重磅]Deep Forest,非神经网络的深度模型,周志华老师最新之作,三十分钟理解!
三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
三十分钟理解:双调排序Bitonic Sort,适合并行计算的排序算法
三十分钟理解:稀疏矩阵存储格式总结+存储效率对比:COO,CSR,DIA,ELL,HYB
强化学习方法系列
强化学习方法(一):探索-利用困境exploration exploitation,Multi-armed bandit
分布式机器学习系统系列
分布式机器学习系统笔记(一)——模型并行,数据并行,参数平均,ASGD
其他散篇
距离计算方法总结
[完美解决]如何在windows安装docker toolbox,使用tensorflow,Jupyter Notebook,各种问题的解决方案
Science14年的聚类论文——Clustering by fast search and find of density peaks
部分半途而废系列…
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning 书,章节1.1,多项式曲线拟合(Polynomial Curve Fitting)
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML)书,章节1.2,Probability Theory (上)
今天开始学模式识别与机器学习Pattern Recognition and Machine Learning (PRML),章节1.2,Probability Theory (下)
今天开始学Pattern Recognition and Machine Learning (PRML),章节1.6,Information Theory信息论简介
今天开始学模式识别与机器学习(PRML),章节5.1,Neural Networks神经网络-前向网络
今天开始学Pattern Recognition and Machine Learning (PRML),章节5.2-5.3,Neural Networks神经网络训练(BP算法)
论文导读系列
ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network
ISSCC 2017论文导读 Session 14 Deep Learning Processors,DNPU: An 8.1TOPS/W Reconfigurable CNN-RNN
ISSCC 2017论文导读 Session 14: A 28nm SoC with a 1.2GHz Prediction Sparse Deep-Neural-Network Engine
ISSCC 2017论文导读 Session 14:ENVISION: A 0.26-to-10 TOPS/W Subword-Parallel DVAFS CNN Processor in 28nm
ISSCC 2017论文导读 Session 14:A 0.62mW Ultra-Low-Power Convolutional-Neural-Network Face-Recognition Processor
ISSCC 2017论文导读 Session 14:A 288μW Programmable Deep-Learning Processor with 270KB On-Chip Weight
ASPLOS’17论文导读——SC-DCNN: Highly-Scalable Deep Convolutional Neural Network using Stochastic Computing
FPGA 17最佳论文导读 ESE: Efficient Speech Recognition Engine with Compressed LSTM on FPGA
---------------------
作者:大饼博士X
来源:CSDN
原文:https://blog.csdn.net/xbinworld/article/details/79118722?utm_source=copy
版权声明:本文为博主原创文章,转载请附上博文链接!