maskrcnn_benchmark理解记录——modeling\detector\generalized_rcnn.py

Generalized R-CNN的主类。就是说这个是mask rcnn的正常架构(boxes and masks. )。至于关节点和其他改变不在此部分。

1)self.backbone = build_backbone(cfg)

2)self.rpn = build_rpn(cfg, self.backbone.out_channels)

3)self.roi_heads = build_roi_heads(cfg, self.backbone.out_channels)

可以看到它由三个主要部分组成:
      - backbone  (resnet50+FPN)
      - rpn              (提取proposals_data)
      -  heads:从RPN获取features 和proposals并进而计算检测结果(class+boxes)和掩码结果(mask)

1)modeling\backbone\backbone.py   提取各个stage的特征图;然后使用feature map进行RPN及ROI pooling操作;根据输入图片预处理后。

features = self.backbone(images.tensors) 

可以得到P2~P6层参数如下:
ipdb> p features[0].size()
torch.Size([1, 256, 200, 272])
ipdb> p featur

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>