Generalized R-CNN的主类。就是说这个是mask rcnn的正常架构(boxes and masks. )。至于关节点和其他改变不在此部分。
1)self.backbone = build_backbone(cfg)
2)self.rpn = build_rpn(cfg, self.backbone.out_channels)
3)self.roi_heads = build_roi_heads(cfg, self.backbone.out_channels)
可以看到它由三个主要部分组成:
- backbone (resnet50+FPN)
- rpn (提取proposals_data)
- heads:从RPN获取features 和proposals并进而计算检测结果(class+boxes)和掩码结果(mask)
1)modeling\backbone\backbone.py 提取各个stage的特征图;然后使用feature map进行RPN及ROI pooling操作;根据输入图片预处理后。
features = self.backbone(images.tensors)
可以得到P2~P6层参数如下:
ipdb> p features[0].size()
torch.Size([1, 256, 200, 272])
ipdb> p featur

最低0.47元/天 解锁文章
839

被折叠的 条评论
为什么被折叠?



