图是别的博客转载知乎的,没给地址,我也不知道原作是谁,画的很好,感谢。
但下面第一张图的最上面应该改为:Feature Matric:(
)


卷积的实现思想:
- 将image转为一个matrix,将卷积操作转为矩阵乘法运算
看下第二幅图:输入图片是3*3*3,假设是RGB,卷积核(滤波器)是2*3*2*2,stride=1,(每个、每层(RGB或BGR)的卷积核是不一样的)
- 先看上半部分的传统卷积:第一个滤波器对RGB三通道进行卷积,每个通道的每一小块对应相乘并累加(不是矩阵相乘)。如第一个滤波器的第一次卷积,R通道的
。同理,G、B通道分别得5,2,本次卷积的三通道累加即7+5+2=14。两个滤波器得到两个输出特征。 - 再看下半部分卷积的矩阵版本: ①input features : 先把3*3*3的图片按照卷积核大小逐通道RGB展平,每次卷积放一行。先整体看RGB的第一次滤波,每个通道的卷积核是2*2, 3个通道就是3*2*2=12。再整体看R通道,就是每次被卷积的部分展成一行,共2*2行,即卷积公式得到的(n-f+2p)/s+1,每个通道是2*2=4,也就是2*2x(3*2*2)=4x12的矩阵 。②Kernel Matrix : 把每个滤波器从左到右从上到下展开,放于第一列,RGB三通道也就是3*2*2,有两个滤波器,也就是(3*2*2)x2的矩阵
737

被折叠的 条评论
为什么被折叠?



