关于卷积的 非常形象的图

图是别的博客转载知乎的,没给地址,我也不知道原作是谁,画的很好,感谢。

但下面第一张图的最上面应该改为:Feature Matric:((H_{out}*W_{out})\times (C*K*K)) 

è¿éåå¾çæè¿°

è¿éåå¾çæè¿°

卷积的实现思想

  • 将image转为一个matrix,将卷积操作转为矩阵乘法运算

看下第二幅图:输入图片是3*3*3,假设是RGB,卷积核(滤波器)是2*3*2*2,stride=1,(每个、每层(RGB或BGR)的卷积核是不一样的)

  • 先看上半部分的传统卷积:第一个滤波器对RGB三通道进行卷积,每个通道的每一小块对应相乘并累加(不是矩阵相乘)。如第一个滤波器的第一次卷积,R通道的 \begin{bmatrix} 1 &2 \\ 1& 1 \end{bmatrix}\bigodot \begin{bmatrix} 1 &1 \\ 2& 2 \end{bmatrix}= 1*1+2*1+1*2+1*2=7。同理,G、B通道分别得5,2,本次卷积的三通道累加即7+5+2=14。两个滤波器得到两个输出特征。
  • 再看下半部分卷积的矩阵版本:         ①input features  : 先把3*3*3的图片按照卷积核大小逐通道RGB展平,每次卷积放一行。先整体看RGB的第一次滤波,每个通道的卷积核是2*2, 3个通道就是3*2*2=12。再整体看R通道,就是每次被卷积的部分展成一行,共2*2行,即卷积公式得到的(n-f+2p)/s+1,每个通道是2*2=4,也就是2*2x(3*2*2)=4x12的矩阵 。②Kernel Matrix  :  把每个滤波器从左到右从上到下展开,放于第一列,RGB三通道也就是3*2*2,有两个滤波器,也就是(3*2*2)x2的矩阵

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>