一些c/c++学习过程中的记录 c语言中函数名与struct可以重名#include <stdio.h>struct foo { int a; int b;};void foo(struct foo *f){ printf("%d, %d", f->a, f->b);}int main(){ struct foo f; f.a = 1; f.b = 2; foo(&f); return 0;}需要注意的是在这样的情
C++开发中用到的一些概念~ 记录开发过程中遇到的一些实际的问题:1回调表现:比如UI上buttom触发,我们需要调用相关函数处理逻辑,也就是说把函数作为一个参数传进函数。例子:STL库中的sortvoid stable_sort(vector<string>::iterator iterBegin, vector<string>::iterator iterEnd, bool (*isShorter)(const string &, const string &));isShort
Github和vscode VSCODE Install下载地址正常安装设置中文在插件中搜索chinese,并且install快捷键Ctrl + Shift + P打开vscode的命令框,并输入Configure Display Language选择chineseC++环境配置参考教程简单的mingwGit IntroductionGit 是分布式版本控制系统。学习地址可以记录每次文件的改动,还可以一起编辑,还可以查看某次改动类似这样实现过程1:在vscode中新建一个文件 不包含英文 并在终端中
惠普workstation安装ubuntu16.04之坑 1前言原本以为在自己的笔记本上装过无数次的ubuntu的安装会很简单,但是在实验室的电脑上安装还是遇到了很多坑!为了能为遇到相同问题的同学提供帮助,同时也为下次安装能有参考,特地写下该博客。2安装的总体流程2.1制作安装启动盘因为之前的驱动盘好像有东西不对了所以就自己重新做了一个。使用OltralSO来进行制作启动盘。其过程很简单,可以参考:地址1 地址22.2给ubuntn分区右键我的电脑->管理->磁盘管理就可以管理磁盘了。我的分区的操作就是右键要分配的卷,选压缩卷,然后
【pytorhc的可视化工具】利用tensorboard_logger进行学习数据可视化 1tensorboard_loggertensorboard_logger官网根据官网的信息,可以知道tensorboard_logger的作用是在不需要TensorFlow的时候记录TensorBoard事件,是TeamHGMemex开发的一款轻量级工具,它将Tensorboard的工具抽取出来,使得非tf用户也可以使用它进行可视化,不过功能有限,但一些常用的还是可以支持。好像更加复杂的为tensoboardX,过段时间再去尝试安装一下吧。其官方使用样例为from tensorboard_logg
【硬件选型】工业相机选择方法 1 相机选型相机的选型主要根据以下几个方面:分辨率相机帧率颜色类别像素位数接口1.1相机分辨率->精度和视野范围要求来选分辨率比如:物体大小 110mm×80mm;检测精度:0.1mm视野(FOV)范围:120mm×90mm计算:(其实就是计算一个像素代表多少)=(12/0.01)* ( 9/0.01)=1200 * 900=108万像素可以选用130万像素相机(1280 * 960);为减小边缘提取时的像素偏移带来的误差,提高系统的精准度和稳定性,实际使用中一般
【python画图工具】matplotib的学习过程 1 初见MatplotlibMatplotlib是python中的画图工具,与matlab中的画图工具类似。官网:https://matplotlib.org/contents.html1.1 Figue对象(画板)在画图之前,需要一个Figure对象,(类似于我们画图需要画板)import matplotlib.pyplot as plt # 导入模块fig = plt.figure() #fig就是Figure对象1.2 Axes(轴)有了画板之后我们要在画板上分绘图的区域,就比如说分
【python内置函数】__getitem__()、__init__() __ getitem __()当实例对象做P[key]运算时,就会调用类中的__getitem__()方法。__ init __()在初始化类的时候自动调用。
【python】多个子文件下的文件放到同一文件夹下 1:背景介绍为了训练网络,采集数据集若干组,每组文件下面都有img和label两个子文件,分别存着图片和txt。如图现在想把他们存到一起2:程序# coding=utf-8import osimport shutildef extractdoc(name): #目标文件夹 root_dir ='./' pattern = '1111' set_list = '11' determination = root_dir + "/" + pattern
【pytorch】查看state_dict 1来源torch.nn.Module模块中的state_dict变量存放训练过程中需要学习的权重和偏执系数,state_dict作为python的字典对象将每一层的参数映射成tensor张量,需要注意的是torch.nn.Module模块中的state_dict只包含卷积层和全连接层的参数,当网络中存在batchnorm时,例如vgg网络结构,torch.nn.Module模块中的state_dict也会存放batchnorm’s running_mean2输出state_dict字典对象中存放的变量
多张图片生成gif(内附代码) 1环境配置1.1images2gif模块github:模块地址下载之后放在目录下即可1.2PIL模块由于PIL不支持python3,我们选择安装它的分支pillowconda install pillow2代码import osimport numpy as npfrom PIL import Imagefrom images2gif import writeGifoutfilename = "my.gif" # 转化的GIF图片名称root_dir="..\\data"na
Python中[ : n]、[m : ]、[-1]、[:-1]、[::-1]、[2::-1]和[1:]的含义 [m : ] 代表列表中的第m+1项到最后一项[ : n] 代表列表中的第一项到第n项import numpy as npa=[1,2,3.4,5]print(a)[ 1 2 3 4 5 ]print(a[-1]) 取最后一个元素结果:[5]print(a[:-1]) 除了最后一个取全部结果:[ 1 2 3 4 ]print(a[::-1]) 取从后向前(相反)的元素结果:[ 5 4 3 2 1 ]print(a[2::-1]) 取从下标为2的元素翻转
【CUDA+CUDNN+gpuPytorch安装2】WIN10+CUDA+pytorch安装 摘要显卡驱动、CUDA、cuDNN以及说明三者之间的关系请看https://blog.csdn.net/m0_37668446/article/details/108363627本文将进行安装,使得可以使用pytorch-gpu1 CUDA安装CUDA安装官网描述:运行CUDA应用程序的两个必要条件是(1)系统至少拥有一个支持CUDA编程的GPU硬件;(2)能够兼容CUDA的驱动程序版本。通过参考官网文档我对下图表格的理解:(1)NVDIA发布的每一个CUDA工具包都有一个最低版本的显卡驱
【CUDA+CUDNN+gpuPytorch安装1】显卡驱动、CUDA、cuDNN以及说明三者之间的关系 文章目录摘要1 显卡驱动、CUDA、cuDNN介绍1.1 显卡驱动1.2 CUDA1.3 CUDNN2 形象的说法3 查看显卡驱动摘要在配置PyTorch的过程中,显卡驱动、CUDA、cuDNN三者之间的关系、作用以及在众多版本中如何搭配一直困扰着我。虽然网上资料很多,但各说其词,即使最终迈过种种坑成功运行,但脑子里还是一团乱麻。所以回过头来看NVIDIA的官方文档,一方面记录配置过程防止遗忘,另一方面也希望能够帮助有和我一样困惑的童鞋。本人的这个是参考。1 显卡驱动、CUDA、cuDNN介绍1.1
conda创建虚拟环境不报错,但是虚拟环境无法生成的解决办法 现象conda create -n pytorch python=3.7输入后不报错也不会生成成功。在Anaconda Navigator里也无法创建。解决办法输入conda clean --all清除之前未完成的conda安装的包就可以正常创建环境了。
transforms.py中的预处理方法进行介绍和总结 常用的操作一、 裁剪——Crop1.随机裁剪:transforms.RandomCrop2.中心裁剪:transforms.CenterCrop3.随机长宽比裁剪 transforms.RandomResizedCrop4.上下左右中心裁剪:transforms.FiveCrop5.上下左右中心裁剪后翻转: transforms.TenCrop二、翻转和旋转——Flip and Rotation6.依概率p水平翻转transforms.RandomHorizontalFlip7.依概率p垂直翻转transf
关于transforms.Normalize()函数说明 transform.ToTensor(),transform.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))那transform.Normalize()是怎么工作的呢?以上面代码为例,ToTensor()能够把灰度范围从0-255变换到0-1之间,而后面的transform.Normalize()则把0-1变换到(-1,1).具体地说,对每个通道而言,Normalize执行以下操作:image=(image-mean)/std其中mean和std分别通过(0.5,0
用python-plt.subplots画色块图 from PIL import Imageimport matplotlib.pyplot as pltcolor_map = [(220, 20, 60), (139, 0, 139), (123, 104, 238), (248, 248, 255), (0, 255, 255), (0, 255, 127), (255, 255, 0), (210, 180, 140)] # 1行8子图fig, axs = plt.subplots(1,