ChiiZhang
码龄8年
关注
提问 私信
  • 博客:64,029
    64,029
    总访问量
  • 20
    原创
  • 1,373,923
    排名
  • 31
    粉丝
  • 0
    铁粉

个人简介:向大佬学习

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2017-02-27
博客简介:

我爱学习的博客

查看详细资料
个人成就
  • 获得73次点赞
  • 内容获得22次评论
  • 获得297次收藏
  • 代码片获得326次分享
创作历程
  • 1篇
    2022年
  • 10篇
    2019年
  • 11篇
    2018年
成就勋章
TA的专栏
  • 面试
    2篇
  • 吴恩达机器学习编程作业
  • 机器学习
    7篇
  • 深度学习
    3篇
  • LeetCode Python解析
    7篇
  • P4
  • SDN
    1篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp数据分析
创作活动更多

新星杯·14天创作挑战营·第9期

这是一个以写作博客为目的的创作活动,旨在鼓励大学生博主们挖掘自己的创作潜能,展现自己的写作才华。如果你是一位热爱写作的、想要展现自己创作才华的小伙伴,那么,快来参加吧!我们一起发掘写作的魅力,书写出属于我们的故事。我们诚挚邀请你们参加为期14天的创作挑战赛! 注: 1、参赛者可以进入活动群进行交流、分享创作心得,互相鼓励与支持(开卷),答疑及活动群请见 https://bbs.csdn.net/topics/619626357 2、文章质量分查询:https://www.csdn.net/qc

475人参与 去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

ubuntu18.04安装显卡驱动,Anaconda,CUDA,pytorch全套流程

一套流程安装显卡驱动,Anaconda,CUDA,Pytorch
原创
发布博客 2022.04.19 ·
4842 阅读 ·
1 点赞 ·
0 评论 ·
45 收藏

面试记录(二)

2019.9.4 滴滴出行 轨迹挖掘组 招聘算法实习生G1:Dijstra算法,Floyd算法,A*算法解释Dijstra是单点到所有点的最短距离,Floyd算法是利用距离矩阵D和结点矩阵P计算所有点到所有点的最短距离,A算法是Dijstra的扩展,当预估函数为0的时候A算法就是DijstraG2:项目经历上的各种问题这个看个人G3:逻辑分析司机在A点时关闭GPS,过了一会到达B...
原创
发布博客 2019.09.04 ·
280 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

面试记录

1. 2019.8.31 百度商业智能实验室Q1:导师让你来吗?关键问题:提前准备好Q2:自我介绍注意:要突出重点,针对你面试的岗位来说你的项目经历,引导面试官往你的重点走。Q3:LSTMLSTM是什么,结构是这样的:从上图中可以看出,在每个序列索引位置t时刻向前传播的除了和RNN一样的隐藏状态h(t)h(t),还多了另一个隐藏状态,如图中上面的长横线。这个隐藏状态我们一般称为细胞...
原创
发布博客 2019.09.02 ·
1226 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

P4编程环境搭建+实现tutorials中basic的案例

前言 最近由于科研的需要,安装了这个SDN的P4环境,不得不说这个过程真的是异常多的bug,装了一周才装好,总结这一周以来的错误,下面告诉大家如何一次性的安装好。(特别提醒,希望你是直接看到这篇文章后来安装的,因为在自己安装的过程中如果出现版本错误而没有把配置好的环境删除干净的话,安装过程基本就卒了啊!)所以推荐安装前满足以下条件之一:刚开始装P4,没有自己先捣鼓然后报各种错重装后的系统...
原创
发布博客 2019.07.05 ·
11884 阅读 ·
15 点赞 ·
10 评论 ·
98 收藏

P4中thrift-0.9.2和nanomsg-1.0.0.zip

发布资源 2019.07.05 ·
zip

LeetCode Python3——10. 正则表达式匹配

问题描述给定一个字符串 (s)(s)(s) 和一个字符模式(p)(p)(p)。实现支持 ‘.’ 和 ‘’ 的正则表达式匹配。‘.’ 匹配任意单个字符。'’ 匹配零个或多个前面的元素。匹配应该覆盖整个字符串 (s) ,而不是部分字符串。说明:s 可能为空,且只包含从 a-z 的小写字母。p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 ∗*∗。示例 1:输入:s =...
转载
发布博客 2019.02.22 ·
471 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

LeetCode Python3——8.字符串转整数

问题描述请你来实现一个 atoi 函数,使其能将字符串转换成整数。首先,该函数会根据需要丢弃无用的开头空格字符,直到寻找到第一个非空格的字符为止。当我们寻找到的第一个非空字符为正或者负号时,则将该符号与之后面尽可能多的连续数字组合起来,作为该整数的正负号;假如第一个非空字符是数字,则直接将其与之后连续的数字字符组合起来,形成整数。该字符串除了有效的整数部分之后也可能会存在多余的字符,这些字...
原创
发布博客 2019.02.22 ·
205 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeetCode Python3——6. Z字形变换

问题描述将一个给定字符串根据给定的行数,以从上往下、从左到右进行 Z 字形排列。比如输入字符串为 “LEETCODEISHIRING” 行数为 3 时,排列如下:L     C     I    RE T  O E  S I  I  GE     D    H   N之后,你的输出需要从左往右逐行读取,产生出一个新的字符串,比如:“LCIRETOESIIGEDH...
原创
发布博客 2019.02.22 ·
425 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeetCode Python3——5. 最长回文数

问题描述给定一个字符串 s,找到 s 中最长的回文子串。你可以假设 s 的最大长度为 1000。示例 1:输入: “babad”输出: “bab”注意: “aba” 也是一个有效答案。示例 2:输入: “cbbd”输出: “bb”Sol 1: (暴力解法) def longestPalindrome(self, s): """ :type s:...
原创
发布博客 2019.02.22 ·
461 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

LeetCode Python3——3. 无重复字符的最长子串

问题描述给定一个字符串,请你找出其中不含有重复字符的 最长子串 的长度。示例 1:输入: “abcabcbb”输出: 3解释: 因为无重复字符的最长子串是 “abc”,所以其长度为 3。示例 2:输入: “bbbbb”输出: 1解释: 因为无重复字符的最长子串是 “b”,所以其长度为 1。示例 3:输入: “pwwkew”输出: 3解释: 因为无重复字符的最长子串是 “w...
原创
发布博客 2019.02.18 ·
319 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

LeetCode Python3——2. 两数相加

问题描述给出两个非空的链表用来表示两个非负的整数。其中,它们各自的位数是按照逆序的方式存储的,并且它们的每个节点只能存储 一位数字。如果,我们将这两个数相加起来,则会返回一个新的链表来表示它们的和。您可以假设除了数字 0 之外,这两个数都不会以 0 开头。示例:输入:(2 -> 4 -> 3) + (5 -> 6 -> 4)输出:7 -> 0 -> 8...
原创
发布博客 2019.02.17 ·
755 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

LeetCode Python3——1. 两数之和

问题描述给定一个整数数组 nums 和一个目标值 target,请你在该数组中找出和为目标值的那 两个 整数,并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是,你不能重复利用这个数组中同样的元素。Sol 1:class Solution: def twoSum(self, nums, target): """ :type nums: Li...
原创
发布博客 2019.02.17 ·
625 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

转载:Python中to_csv函数输出的utf8数据用Excel打开是乱码

df.to_csv(“df.csv”, encoding=’utf8’) 这种写法代码会打开会乱码,正确方法:df.to_csv(“df.csv”, encoding=’utf_8_sig’) 转载文章:https://blog.csdn.net/weixin_39461443/article/details/75303072...
转载
发布博客 2018.11.10 ·
1099 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

转载:Python中to_csv函数输出的utf8数据用Excel打开是乱码

df.to_csv(“df.csv”, encoding=’utf8’) 这种写法代码会打开会乱码,正确方法:df.to_csv(“df.csv”, encoding=’utf_8_sig’) 转载文章:https://blog.csdn.net/weixin_39461443/article/details/75303072...
转载
发布博客 2018.11.10 ·
1099 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Tensorflow中迁移学习出现 OOM 解决方案

tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[]出现以上情况要注意以下两个方式:1.batch_size值设置过大,导致内存溢出,batch_size是每次送入模型中的值,由于GPU的关系,一般设为16,32,64,128。2. ima...
原创
发布博客 2018.10.28 ·
1914 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

神经网络(二)——深入理解反向传播的四个基本方程

由于神经网络覆盖的内容比较多,一时提笔不知从何开始说起,刚好看到这一章以公式为主,因此先入手这一章。本章参考书籍《神经网络与深度学习》以及三蓝一棕的B站视频。1.预备知识我们先来看一张图,了解一下我们的符号定义: 我们首先给出网络中权重的定义:wljkwjklw_{jk}^l表示从第l−1l−1l-1层的的kkk个神经元到lll层的第jjj个神经元的连接的权重,可能大家会觉得这里权重...
原创
发布博客 2018.08.06 ·
4081 阅读 ·
17 点赞 ·
4 评论 ·
32 收藏

吴恩达机器学习——学习理论,经验风险最小化(ERM),一般误差(测试误差),VC维

这一章主要是学习的理论。首先我们来关注这章主要研究的问题: 1.我们在实践中针对训练集有训练误差,针对测试集有测试误差,而我们显然更关心的是测试误差。但是实际算法通常都是由训练集和模型结合,那么我们如何针对训练集的好坏来体现出测试误差的信息呢?这是我们研究的第一个问题 2.是否存在某些条件,我们能否在这些条件下证明某些学习算法能够良好工作?1.符号定义写在前面,这里这把各种符号定义...
原创
发布博客 2018.07.20 ·
6289 阅读 ·
5 点赞 ·
0 评论 ·
33 收藏

支持向量机(四)——深入理解SMO优化算法

支持向量机的最后一节,用SMO优化算法解决对偶函数的最后优化问题,首先先介绍坐标上升法1.坐标上升法假设我们有一个要求解的优化问题:maxαW(α1,α2,...,αm)maxαW(α1,α2,...,αm)\underset{\alpha}{ max}W(\alpha _{1},\alpha _{2},...,\alpha _{m})这里W是αα\alpha向量的函数。之前我们讲过求...
原创
发布博客 2018.07.13 ·
1202 阅读 ·
2 点赞 ·
0 评论 ·
4 收藏

支持向量机(三)——深入理解核函数,软间隔SVM

快捷键-加粗 按按按按按Ctrl + B -斜体 CTRL + I -引用 CTRL + Q -插入链接 Ctrl + L键键键键键 -插入代码 按下按下按下按下按下Ctrl + K -插入图片 按按按CTRL + G -提升标题 Ctrl + H键键键键键 -有序列表 ...
原创
发布博客 2018.07.11 ·
3278 阅读 ·
1 点赞 ·
0 评论 ·
8 收藏

吴恩达课后编程作业(python+matlab)代码+习题要求

发布资源 2018.07.09 ·
zip
加载更多