【Matplotlib】绘图常见设置说明

设置1：图像的大小设置。

f.set_figheight(15)
f.set_figwidth(15)

f, axs = plt.subplots(2,2,figsize=(15,15))

设置2：刻度和标注特殊设置

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
fig = plt.figure(figsize=(3, 3))
ax = fig.add_subplot(1, 1, 1, frameon=False)
ax.set_xlim(-0.015, 1.515)
ax.set_ylim(-0.01, 1.01)
ax.set_xticks([0, 0.3, 0.4, 1.0, 1.5])
#增加0.35处的刻度并不标注文本，然后重新标注0.3和0.4处文本
ax.set_xticklabels([0.0, "", "", 1.0, 1.5])
ax.set_xticks([0.35], minor=True)
ax.set_xticklabels(["0.3 0.4"], minor=True)

#上述设置只是增加空间，并不想看到刻度的标注，因此次刻度线不予显示。
for line in ax.xaxis.get_minorticklines():
line.set_visible(False)

ax.grid(True)
plt.show()

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
import numpy as np

# Plot a sinc function
delta=2.0
x=np.linspace(-10,10,100)
y=np.sinc(x-delta)

# Mark delta
plt.axvline(delta,ls="--",color="r")
plt.annotate(r"$\delta$",xy=(delta+0.2,-0.2),color="r",size=15)
plt.plot(x,y)

设置3：增加X轴与Y轴间的间隔，向右移动X轴标注一点点即可

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt

fig = plt.figure()
plot_data=[1.7,1.7,1.7,1.54,1.52]
xdata = range(len(plot_data))
labels = ["2009-June","2009-Dec","2010-June","2010-Dec","2011-June"]
ax.plot(xdata,plot_data,"b-")
ax.set_xticks(range(len(labels)))
ax.set_xticklabels(labels)
ax.set_yticks([1.4,1.6,1.8])

# grow the y axis down by 0.05
ax.set_ylim(1.35, 1.8)
# expand the x axis by 0.5 at two ends
ax.set_xlim(-0.5, len(labels)-0.5)

plt.show()

设置4：移动刻度标注

for tick in ax2.xaxis.get_majorticklabels():
tick.set_horizontalalignment("left")

ax2.xaxis.get_majorticklabels()[2].set_y(-.1)

pl.xlabel("...", labelpad=20) 

ax.xaxis.labelpad = 20

# -*- coding: utf-8 -*-

import matplotlib.pyplot as plt
import numpy as np
import datetime

# my fake data
dates = np.array([datetime.datetime(2000,1,1) + datetime.timedelta(days=i) for i in range(365*5)])
data = np.sin(np.arange(365*5)/365.0*2*np.pi - 0.25*np.pi) + np.random.rand(365*5) /3

# creates fig with 2 subplots
fig = plt.figure(figsize=(10.0, 6.0))
ax = plt.subplot2grid((2,1), (0, 0))
ax2 = plt.subplot2grid((2,1), (1, 0))
## plot dates
ax2.plot_date( dates, data )

# rotates labels
plt.setp( ax2.xaxis.get_majorticklabels(), rotation=-45 )

# shift labels to the right
for tick in ax2.xaxis.get_majorticklabels():
tick.set_horizontalalignment("right")

plt.tight_layout()
plt.show()

设置5：调整图像边缘及图像间的空白间隔

plt.subplots_adjust(left=0.2, bottom=0.2, right=0.8, top=0.8，hspace=0.2, wspace=0.3)

设置6：子图像统一标题设置。

import matplotlib.pyplot as plt

fig, big_axes = plt.subplots(figsize=(15.0, 15.0) , nrows=3, ncols=1, sharey=True)

for row, big_ax in enumerate(big_axes, start=1):
big_ax.set_title("Subplot row %s \n" % row, fontsize=16)

# Turn off axis lines and ticks of the big subplot
# obs alpha is 0 in RGBA string!
big_ax.tick_params(labelcolor=(0,0,0,0), top='off', bottom='off', left='off', right='off')
# removes the white frame
big_ax._frameon = False

for i in range(1,10):
ax.set_title('Plot title ' + str(i))

fig.set_facecolor('w')
plt.tight_layout()
plt.show()    

设置7：图像中标记线和区域的绘制

import numpy as np
import matplotlib.pyplot as plt

t = np.arange(-1, 2, .01)
s = np.sin(2*np.pi*t)

plt.plot(t, s)
# draw a thick red hline at y=0 that spans the xrange
l = plt.axhline(linewidth=4, color='r')

# draw a default hline at y=1 that spans the xrange
l = plt.axhline(y=1)

# draw a default vline at x=1 that spans the yrange
l = plt.axvline(x=1)

# draw a thick blue vline at x=0 that spans the upper quadrant of
# the yrange
l = plt.axvline(x=0, ymin=0.75, linewidth=4, color='b')

# draw a default hline at y=.5 that spans the middle half of
# the axes
l = plt.axhline(y=.5, xmin=0.25, xmax=0.75)

p = plt.axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5)

p = plt.axvspan(1.25, 1.55, facecolor='g', alpha=0.5)

plt.axis([-1, 2, -1, 2])

plt.show()

• 广告
• 抄袭
• 版权
• 政治
• 色情
• 无意义
• 其他

120