RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0

本文介绍了在处理Tensor时遇到的设备不一致错误,强调了所有Tensor操作应当在同一设备上进行。通过将代码中的LongTensor转换并附加.to(device)方法,确保了所有张量在GPU(cuda)上运行,从而消除了报错。理解并正确使用.to(device)对于高效利用GPU资源至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

看到这个报错我就想,是不是只要涉及到Tensor的地方,都要带一个 to(device),此处的device指的是cuda

于是我找到对应的没有采用 to(device) 的但涉及到 tensor 的代码,将以下部分:

actions_v.unsqueeze(-1).type(torch.LongTensor)

改成了:

actions_v.unsqueeze(-1).type(torch.LongTensor).to(device)

重新运行代码,果然不再报错了。

报错的本意就是:希望所有的tensor都在同一个设备上,而不是一会cpu,一会儿gpu

### 解决 PyTorch 多GPU训练中 'Expected all tensors to be on the same device' 错误 当在多GPU环境中运行PyTorch程序,如果遇到`RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:7 and cuda:0!`这样的错误提示,表明存在张量分布在不同的CUDA设备上。为了确保所有操作都能顺利进行,必须使参与计算的所有张量位于同一设备之上。 #### 确认并统一张量所在设备 可以通过`.to(device)`方法将指定的张量移动到特定的设备上去。对于模型及其参数还有输入数据都需要这样做: ```python import torch # 定义目标设备 target_device = torch.device('cuda:0') # 或者其他编号的GPU model.to(target_device) for param in model.parameters(): param.requires_grad_(True).to(target_device) input_tensor = input_tensor.to(target_device) ``` 此外,在定义优化器之前也需要保证模型已经在正确的设备上了[^4]。 #### 使用 `DataParallel` 实现简单并行化 为了让多个GPU能够共同分担工作负载,可以考虑采用`torch.nn.DataParallel`类封装网络结构,这会自动分配批次的数据给各个可用的GPU处理: ```python if torch.cuda.device_count() > 1: print(f"Using {torch.cuda.device_count()} GPUs!") model = torch.nn.DataParallel(model) model.to(target_device) ``` 需要注意的是,虽然`DataParallel`能简化跨多卡训练的过程,但在某些情况下可能会带来性能损失或是不便之处;此推荐探索更先进的分布式训练方案如`DistributedDataParallel`[^2]。 #### 设置默认Tensor类型为CUDA Tensor 为了避免意外创建CPU上的tensor对象,可以在脚本开头设置全局默认tensor类型为CUDA tensor: ```python torch.set_default_tensor_type(torch.cuda.FloatTensor) ``` 不过这种方法并非总是适用,因为并不是所有的运算都支持这种类型的tensor作为输入[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我有明珠一颗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值