深度学习
深度学习
我有明珠一颗
一条通往业界大神的成功之路
展开
-
AttributeError: module ‘numpy’ has no attribute ‘int’
2、报错:AttributeError: module 'numpy' has no attribute 'float'1、报错:AttributeError: module 'numpy' has no attribute 'int'解决办法:把np.float替换为float或者np.float64/np.float32 即可。原创 2024-07-15 16:33:47 · 573 阅读 · 0 评论 -
RuntimeError:An attempt has been made to start a new process before the current process has finished
RuntimeError:An attempt has been made to start a new process before the current process has finished its bootstrapping phase. This probably means that you are not using fork to start your child processes and you have forgo原创 2024-01-11 18:09:35 · 493 阅读 · 0 评论 -
什么是前向传播?什么是反向传播?
前向传播和反向传播是紧密相关的过程,它们相互配合,实现了神经网络的训练。通过前向传播,模型可以根据输入数据生成预测结果;通过反向传播,可以计算模型的梯度信息,从而进行参数优化。这样循环迭代进行多次,直到模型的性能达到预期水平。原创 2024-01-10 13:35:42 · 5763 阅读 · 0 评论 -
在PyTorch中设置随机数生成器的种子值
在PyTorch中设置随机数生成器的种子值的方法CPU:可以使用torch.manual_seed()函数GPU:需要额外设置torch.cuda.manual_seed()来设置GPU上的随机数生成器种子值。原创 2023-12-26 15:01:38 · 890 阅读 · 0 评论 -
将ipynb文件转为py的简单方法(图文并茂)
打开可以使用jupyter命令的命令窗口(如果没有jupyter则需要先安装jupyter),cd 命令进入到 ipynb 文件所在的文件夹,执行jupyter nbconvert --to script xxx.ipynb 即可完成 ipynb 文件到 py 文件的转化,执行jupyter nbconvert --to script *.ipynb 则可以实现将当前文件夹下(不包括子文件夹下)的所有ipynb 文件到 py 文件。原创 2023-12-25 11:38:15 · 3144 阅读 · 0 评论 -
TypeError: No loop matching the specified signature and casting was found for ufunc logical_or 解决办法
TypeError: No loop matching the specified signature and casting was found for ufunc logical_or 解决办法原创 2023-12-22 18:26:59 · 2107 阅读 · 0 评论 -
知识蒸馏(Pytorch入门)
【代码】蒸馏学习(Pytorch入门)原创 2023-11-15 11:00:00 · 707 阅读 · 0 评论 -
语义分割 - 简介
语义分割是计算机视觉领域的一项重要任务,旨在将图像中的每个像素标记为对应的语义类别。与传统的图像分类任务不同,语义分割不仅要识别整个图像的类别,还需要对图像中的每个像素进行分类,从而实现对图像的像素级别理解。语义分割的目标是为图像中的每个像素分配一个语义标签,这些标签通常代表不同的物体、物体部分或场景类别。例如,在一张道路图像中,语义分割可以将每个像素标记为车辆、行人、道路、建筑等类别。这种像素级的标注可以为许多应用提供更详细的信息,比如自动驾驶、医学图像分析、智能视频监控等。原创 2023-10-31 20:52:37 · 304 阅读 · 0 评论 -
语义分割 & 实例分割的异同点
语义分割和实例分割是计算机视觉领域中两个相关但不同的任务,它们都涉及对图像像素进行分类和标记,但关注的对象和目标有所不同。语义分割关注的是图像中不同语义类别的分割,而实例分割不仅关注语义类别的分割,还要对不同实例进行区分。两者在目标定义、输出结果和处理方式上有明显的区别,应用于不同的计算机视觉任务中。原创 2023-10-31 20:51:17 · 1583 阅读 · 0 评论 -
EEG 情绪标签 - 简介
在EEG情绪研究中,有两种常见的情绪表达方式:多维度情绪模型、离散情绪模型。原创 2023-10-25 12:00:18 · 1252 阅读 · 0 评论 -
EEG脑电信号的具体采集过程
脑电图(EEG)是一种记录大脑活动的非侵入性方法。下面是EEG脑电信号的典型采集过程:准备:在进行EEG采集之前,需要准备好以下设备和材料:EEG采集设备:包括EEG电极、放大器和记录设备。电极帽或电极盘:用于安装电极在头皮上。电极准备液:通常是一种导电凝胶,用于改善电极与头皮之间的接触。原创 2023-10-25 10:26:05 · 2051 阅读 · 0 评论 -
简单介绍一下迁移学习
迁移学习是一种机器学习技术,旨在利用从一个任务或领域学习到的知识来改善另一个任务或领域的学习性能。在传统的机器学习方法中,通常假设训练数据和测试数据是从相同的分布中独立同分布采样的。然而,在现实世界中,这个假设并不总是成立,因为在不同的任务或领域中可能存在差异。迁移学习的目标是通过利用源领域(source domain)上学习到的知识来提升目标领域(target domain)上的学习表现。源领域通常具有丰富的标注数据或已经训练好的模型,而目标领域的数据相对较少或者没有标注。原创 2023-10-25 10:21:51 · 432 阅读 · 0 评论 -
人工智能期末考试(刷题篇&部分题有答案)
参考:https://wenku.baidu.com/view/6553b54458cfa1c7aa00b52acfc789eb172d9e08.htmlhttps://wenku.baidu.com/view/cdff736caf1ffc4ffe47accb.htmlhttps://wenku.baidu.com/view/c214804be45c3b3567ec8b79.html#https://wenku.baidu.com/view/a5be97c726d3240c844769eae原创 2023-10-23 14:57:25 · 8852 阅读 · 0 评论 -
人工智能期末考(东大卷)
刚刚考完人工智能,趁着记忆还热乎,记录一下填空题(15题,没空0.5’,共20’)1、生成式连接词:否定(negation)、析取(disjunction) or、合取(conjunction) and、蕴含(implication)/条件(position)、等价(equivalence)/双条件量词(quantifier):全称量词(universal quantifier)、存在量词(existential quantifier)对于一阶谓词逻辑,即若子句集是不可满足的,则必存在一个从该原创 2023-10-23 14:55:28 · 470 阅读 · 0 评论 -
论文阅读笔记《DRAW: A Recurrent Neural Network for Image Generation》
笔者想要深入理解循环神经网络,找了一通,发现一篇比较有意思的论文,在此做个记录。该论文于2015年由Google Deepmind发表在ICML并产生了很大的影响力。摘要本文介绍了用于图像生成的深度循环注意力写入器(Deep Recurrent Attentive Writer,DRAW)神经网络体系结构。 DRAW网络结合了模仿人眼偏爱的新颖空间注意力机制,以及允许迭代构造复杂图像的顺序变分自动编码框架。该系统大大改进了MNIST生成模型的最新技术,并且在Street View House Numbe原创 2023-10-23 14:54:08 · 222 阅读 · 0 评论 -
学习率设置太大或者太小会有哪些影响?
学习率是机器学习算法中的一个重要超参数,它控制了参数更新的步长。学习率设置得太大或太小都可能对训练过程产生负面影响。原创 2023-10-13 16:41:17 · 5856 阅读 · 0 评论 -
过拟合和欠拟合是什么?有什么异同点?解决办法是什么?
1、过拟合过拟合指的是模型在训练数据上表现得很好,但在未见过的测试数据上表现较差的情况。过拟合通常发生在模型过于复杂、参数过多的情况下,导致模型过度记忆了训练数据的噪声和细节,而忽略了数据的整体趋势和泛化能力。过拟合的模型对训练数据过于敏感,可能会出现过度拟合噪声的情况,导致泛化能力下降。2、欠拟合欠拟合指的是模型在训练数据上表现较差,无法很好地捕捉数据的特征和模式。欠拟合通常发生在模型过于简单、参数过少的情况下,导致模型无法适应数据的复杂性和变化,无法捕捉数据的潜在规律和特征。原创 2023-10-13 16:31:39 · 9269 阅读 · 0 评论 -
F.interpolate 在训练过程中无可学习参数
在PyTorch中,F.interpolate函数本身并没有可学习参数。它是一个用于调整输入张量尺寸的函数,通常用于图像的上采样或下采样操作。原创 2023-09-18 15:30:40 · 590 阅读 · 0 评论 -
conda 环境安装 tensorflow2.0 & tensorflow1.15
conda 环境安装 tensorflow2.0 & tensorflow1.15原创 2023-06-08 21:44:28 · 1274 阅读 · 0 评论 -
Pytorch nn.Softmax(dim=?) 详解
有了这个d0,d1,d2,d3...的维度说明之后,我们可以去理解任意一个tensor的Softmax运算,万变不离其宗。原创 2023-05-12 12:09:45 · 3208 阅读 · 0 评论 -
深度学习代码报错 TypeError:‘tuple‘ object is not callable
深度学习代码报错 TypeError:‘tuple‘ object is not callable 跑深度学习代码的时候突然总报这个错误,后来才发现是代码后面不小心加了逗号。把逗号去掉就可以了。原创 2023-05-11 16:57:12 · 308 阅读 · 0 评论 -
element-wise product:两个矩阵对应位置元素进行乘积
element-wise product = element-wise multiplication = Hadamard product含义:两个矩阵对应位置元素进行乘积原创 2023-04-26 13:30:53 · 3785 阅读 · 0 评论 -
动手学深度学习之如何理解param.grad / batch_size(详细讲解)
动手学深度学习之如何理解param.grad / batch_size(详细讲解)从上图计算过程可以看出,params.grad 其实是batch中所有样本的grad总和,所以这个时候除以batch_size就是相当于取一个平均值,这样就算下一次传入的batch_size改变了,最后也不会影响得到的平均数。原创 2023-02-09 19:44:50 · 2834 阅读 · 15 评论 -
梯度累加是什么意思-详解
第一次调用backward反向传播,结果是(2 4 6),中间没有梯度清零,第二次调用backward反向传播,又有了一波结果(2 4 6),加在之前的结果上就得了(4 8 12)原创 2023-02-08 22:32:14 · 492 阅读 · 0 评论 -
torch.distributions.multinomial.Multinomial——小白亦懂
torch.distributions.multinomial.Multinomial(total_count=1,probs=None,logits=None,validate_args=None)看书看到这个函数不是很懂,搜索发现连 torch API 都没有很细致地讲,我最后的理解如下:比方说以下面为例,这里有几个前提:1、probs.sum() 为12、probs有几个元素,我们就只能往几个位置掷骰子,这是限定的大前提原创 2023-02-08 16:19:59 · 913 阅读 · 1 评论 -
set_xscale 表示x轴缩放比例,一张图明明白白
set_xscale 意为设置x轴缩放比例,设置为‘linear’时,x轴是均匀分布的;设置为‘log’时,x轴比例尺逐渐增大。原创 2023-02-02 23:55:04 · 1971 阅读 · 0 评论 -
torch.utils.data.DataLoader之简易理解(小白进)
官方解释:Dataloader 组合了 dataset & sampler,提供在数据上的 iterable主要参数:1、dataset:这个dataset一定要是torch.utils.data.Dataset本身或继承自它的类里面最主要的方法是__getitem__(self, index) 用于根据index索引来取数据的2、batch_size:每个batch批次要返回几条数据3、shuffle:是否打乱数据,默认False4、sampler:sample stra.原创 2021-10-15 12:18:17 · 5055 阅读 · 1 评论 -
LINK : fatal error LNK1181: 无法打开输入文件“ID=2.obj”
毫不夸张地说,这个问题困扰了我两天,搞得我两台机器上都搭建了环境,誓要测试出是什么问题,在最后就快要放弃的时候,偶然发现了问题,问题是出现在代码上,类似于文件路径的地方。1、报错内容:nvcc --compiler-bindir C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Tools\MSVC\14.16.27023\bin\hostx64\x64 --shared -LD:\ProgramData\Anacond原创 2021-07-29 18:50:56 · 818 阅读 · 2 评论 -
pytorch如何转换tensor的类型dtype
比如现在要将 float 类型的 tensor 转换为 long 类型:# 两种方法都可以a = a.long()a = torch.tensor(a, dtype=torch.long)同理,如果是改为其他类型,则把 long 替换为对应的类型就行原创 2021-07-16 18:46:11 · 20170 阅读 · 0 评论 -
日志分析工具:画出loss曲线
基本功能:生成loss图片,保存到log日志的同一目录下,取名与log文件一致;内容涉及正则化&plot画图技巧在跑深度学习项目的时候,可能会有各种各样的log日志,写一个工具包可以快速画出loss图很方便。如果大家的日志和我的类似,可以取用我的代码做修改。我本次的项目日志分两种,分别是打印1个loss和打印3个loss,相关变量值可以在文件开头做修改。以下是我的两种日志:# --------------------------------------------------.原创 2021-07-13 15:29:54 · 4257 阅读 · 0 评论 -
addmm_与addmm的区别
两者唯一区别:addmm_()函数可以在原对象的基础上进行修改,而addmm()函数则没有该功能。我在看视频学习敲代码的时候,误将dist.addmm_(1, -2, inputs, inputs.t())写成了:dist.addmm(1, -2, inputs, inputs.t())导致后期程序怎么也跑不出正常一点的结果,为了找到错误所在,真的是煞费苦心了。希望大家不要犯和我一样的错误,敲代码时擦亮眼睛,遇到不懂的函数,绝不模棱两可!...原创 2021-07-13 15:16:12 · 2344 阅读 · 3 评论 -
Adding visible gpu devices: 0 每次运行到这里卡很久
Step1. 设置环境变量:CUDA_CACHE_MAXSIZE=4294967296Step2. 重启电脑貌似之后就不会再有这种问题了原创 2021-07-04 22:52:58 · 8761 阅读 · 12 评论 -
神经网络代码总是停在to(device)很久之后才能继续运行(解决)
如图所示,每次用cpu就能跑,但跑非常慢,然后就会把cuda设置为True,这样就在gpu上面跑了,但每次跑到to(device) 的时候就会卡很久很久,总之还是很慢很慢,所以在朋友的帮助下解决了这个问题。CUDA版本检查,我的显卡是3060,据说GeForce RTX 30系列显卡仅支持CUDA 11.1及以上版本,于是去安装了CUDA11.1。检查下环境变量,没毛病:然后再在终端执行:nvcc -V 检查下,没毛病:接着,在pytorch官网找到cuda11.1对应的pyt...原创 2021-06-05 11:58:34 · 8881 阅读 · 2 评论 -
ValueError: check_hostname requires server_hostname
关代理原创 2021-06-05 11:53:36 · 605 阅读 · 4 评论 -
File “<frozen importlib._bootstrap>“, line 1006, in _gcd_import File “<frozen importlib._bootstr
主要报错: File "<frozen importlib._bootstrap>", line 1006, in _gcd_import File "<frozen importlib._bootstrap>", line 983, in _find_and_load File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked File "<frozen i...原创 2021-06-05 11:52:09 · 14271 阅读 · 0 评论 -
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0
看到这个报错我就想,是不是只要涉及到Tensor的地方,都要带一个to(device),此处的device指的是cuda于是我找到对应的没有采用to(device) 的但涉及到 tensor 的代码,将以下部分:actions_v.unsqueeze(-1).type(torch.LongTensor)改成了:actions_v.unsqueeze(-1).type(torch.LongTensor).to(device)重新运行代码,果然不再报错了。报错的本意就是:希望所有..原创 2021-06-05 11:30:58 · 28792 阅读 · 0 评论 -
TypeError: Parameter to MergeFrom() must be instance of same class: expected Summary got Summary.
问题就在这里:这几行代码注释掉,程序就能正常运行,所以我知道可能是tensorboardX版本问题,但是网上找不到,最后在一篇博文https://blog.csdn.net/qq_43620967/article/details/110199356里面挖到了答案,这里把它作为标题放出来,帮助更多人。把原来的:from tensorboardX import SummaryWriter改为:from torch.utils.tensorboard import SummaryW..原创 2021-06-05 10:55:01 · 2549 阅读 · 0 评论 -
手写数字识别入门例子(TensorBoard初体验)
继 TensorFlow第一天,从入门到绝望到重新看到希望,继续记录下我的学习过程吧!1、前面已经成功运行了第一步:cd c:/Users/wenfeng/.conda/envs/py36/lib/site-packages/tensorflow/examples/tutorials/mnistpython mnist_with_summaries.py等待几分钟2、进行第二步,打开 TensorBoard 面板:cd c:/Users/wenfeng/.conda/envs/py.原创 2020-11-07 22:26:16 · 245 阅读 · 0 评论
分享