sklearn
sklearn学习
我有明珠一颗
一条通往业界大神的成功之路
展开
-
sklearn.svm.SVC 支持向量机-简介
sklearn.svm.SVC 是 Scikit-learn(一个常用的机器学习库)中的一个类,用于支持向量机(Support Vector Machine,SVM)算法中的分类任务。SVM 是一种用于分类和回归的监督学习算法。在分类任务中,SVM 构建一个决策边界,将不同类别的样本分开。SVC 类则实现了标准的支持向量机分类器。原创 2024-01-22 16:55:41 · 1164 阅读 · 2 评论 -
GridSearchCV 工具介绍
GridSearchCV 是一个用于超参数调优的工具,它在给定的参数网格中执行交叉验证,以确定最佳的参数组合。通过穷举搜索(exhaustive search)来寻找最佳参数,即尝试所有可能的参数组合,并使用交叉验证来评估每个参数组合的性能。原创 2023-10-05 00:55:59 · 683 阅读 · 0 评论 -
StratifiedKFold 函数介绍
StratifiedKFold 是一种交叉验证方法,用于在机器学习任务中对数据集进行划分。它是对KFold方法的改进,特别适用于样本不平衡的情况。在 StratifiedKFold 中,数据集被划分为k折(folds),其中每折都保持了原始数据中各个类别的样本比例。这意味着每个折中的类别分布与整个数据集中的类别分布相似。原创 2023-10-05 00:35:17 · 3099 阅读 · 0 评论 -
LogisticRegression 与 LogisticRegressionCV 的区别
LogisticRegression 用于拟合逻辑回归模型,并手动调整超参数。LogisticRegressionCV 基于交叉验证自动选择最佳的正则化强度,无需手动调整超参数。根据你的需求,你可以选择使用其中之一。如果你希望手动调整正则化强度或其他超参数,可以使用LogisticRegression。如果你希望自动选择最佳的正则化强度,并进行交叉验证来提高模型性能,可以使用LogisticRegressionCV。原创 2023-10-04 23:15:42 · 826 阅读 · 0 评论 -
RandomForestClassifier 与 GradientBoostingClassifier 的区别
RandomForestClassifier使用随机森林集成多个决策树,通过投票或平均来生成最终的预测结果,具有较好的鲁棒性。GradientBoostingClassifier使用梯度提升方法集成多个决策树,通过加权组合决策树的预测结果来提升整体模型性能,对噪声和离群值的鲁棒性相对较弱。原创 2023-10-04 23:08:22 · 1053 阅读 · 0 评论 -
sklearn.preprocessing.scale
sklearn.preprocessing.scale简介函数:sklearn.preprocessing.scale(X, axis=0, with_mean=True, with_std=True, copy=True)作用:数据标准化公式:(X-X_mean)/X_std 计算时对每个属性/每列分别进行。原理:将数据按其属性(按列进行)减去其均值,然后除以其方差。最后得到的结果是,对...转载 2019-06-11 19:06:05 · 14651 阅读 · 1 评论
分享