动目标显示处理解析八(MTI改善因子辨析)

       杂波衰减和MTI改善因子是描述MTI滤波器性能的两个重要性能指标。

       MTI杂波衰减(CA)可定义为滤波器输入端杂波功率{C_i}与输出端杂波功率{C_o}的比值:

CA = \frac{​{​{C_i}}}{​{​{C_o}}}

(1)

       信号的功率与地杂波(海杂波)的功率比值称为信杂比(SNC):

SNC = \frac{S}{C}

(2)

       MTI改善因子I定义为输出端信杂比与输入端信杂比的比值:

I = \frac{​{SN{C_o}}}{​{SN{C_i}}} = \left( {\frac{​{​{S_o}}}{​{​{C_o}}}} \right)/\left( {\frac{​{​{S_i}}}{​{​{C_i}}}} \right)

(3)

从公式(1)可知,杂波衰减这一指标反映的是MTI对杂波的抑制能力公式3可知,改善因子这一指标反映的是MTI对杂比的改善能力,如图1所示。联合公式(1)(3),可得MTI改善因子又可写为:

I = \left( {\frac{​{​{S_o}}}{​{​{S_i}}}} \right)/\left( {\frac{​{​{C_o}}}{​{​{C_i}}}} \right)

(4)

从中可以看出,MTI改善因子这一指标评价MTI滤波器的杂波改善信号改善两方面的能力

图1  MTI滤波器输入输出示意图

       观察公式(4)可知,比值{S_o}/{S_i}是MTI滤波器对信号的功率增益,比值{C_o}/{C_i}是MTI滤波器对杂波的功率增益,两者都与MTI滤波器的传输函数{\left. {H\left( z \right)} \right|_{z = {e^{j2\pi {f_d}{T_r}}}}}有关。对于经过下变频处理后的信号与杂波,传输函数{\left. {H\left( z \right)} \right|_{z = {e^{j2\pi {f_d}{T_r}}}}}中的{f_d}也即信号与杂波自身的频率f,参见《动目标显示处理解析二(盲速)》,因此传输函数可直接表述为H\left( f \right)

       对于杂波,其功率谱分布在较宽的频率范围内,且会随环境条件变化,因此杂波输出功率和输入功率的比值{C_o}/{C_i}需要将杂波的功率谱与滤波器的频率响应相结合,通过积分计算输出杂波功率再除以输入杂波功率得到。通常情况杂波功率谱服从高斯分布,即:

W\left( f \right) = \frac{​{​{P_c}}}{​{\sqrt {2\pi } {\sigma _t}}}{e^{ - {f^2}/2\sigma _t^2}}

(5)

其中,{P_c}是杂波功率(常量),{\sigma _t}是杂波频率的均方根值,它描述了频域杂波谱的扩展。{\sigma _t}可由三部分主要组成,{\sigma _t} = \sqrt {\sigma _v^2 + \sigma _s^2 + \sigma _w^2}。其中{\sigma _w}是由于风速造成的杂波谱扩展的标准差;{\sigma _s}是由于天线扫描转动造成的杂波谱扩展的标准差,{\sigma _v}是由于雷达平台移动造成的杂波谱扩展的标准差。通常情况下满足:

{\sigma _w} = \frac{​{2{v_w}}}{\lambda }

{\sigma _s} = 0.265\left( {\frac{​{2\pi }}{​{​{\Theta _a}{T_{scan}}}}} \right)

{\sigma _v} = \frac{v}{\lambda }\sin \theta

(6)

其中,\lambda是波长,{v_w}是风速均方根值,{\Theta _a}是以弧度表示的3dB方位波束宽度,{T_{scan}}是天线扫描时间,v是雷达平台速度,\theta是以弧度表示的相对于平台运动方向的方位角。

       MTI滤波器输入端的杂波功率{C_i}为:

{C_i} = \int_{ - \infty }^\infty {W\left( f \right)df} = {P_c}\int_{ - \infty }^\infty {\frac{​{​{P_c}}}{​{\sqrt {2\pi } {\sigma _t}}}{e^{ - {f^2}/2\sigma _t^2}}df} = {P_c}

(7)

       MTI滤波器输出端的杂波功率{C_o}为:

{C_o} = \int_{ - \infty }^\infty {W\left( f \right)} {\left| {H\left( f \right)} \right|^2}df

(8)

       那么对于二脉冲对消器有其传输函数为:\left| {H\left( f \right)} \right| = 2\sin \left( {\pi f/{f_r}} \right),因此代入公式(8)中可得杂波输出功率{C_o}为:

{C_o} = \int_{ - \infty }^\infty {\frac{​{​{P_c}}}{​{\sqrt {2\pi } {\sigma _t}}}{e^{ - {f^2}/2\sigma _t^2}}4{​{\sin }^2}\left( {\pi f/{f_r}} \right)df}

(9)

图2  MTI二脉冲对消器示意图

       对于常规地杂波或海杂波来讲,其频谱的主要能量都集中在f = 0附近,也即{\sigma _t} < < {f_r},因此输出功率{C_o}可近似为:

\begin{array}{l} {C_o} \approx \int_{ - \infty }^\infty {\frac{​{​{P_c}}}{​{\sqrt {2\pi } {\sigma _t}}}{e^{ - {f^2}/2\sigma _t^2}}4{​{\left( {\pi f/{f_r}} \right)}^2}df} \\ {\rm{ }} = \frac{​{4{P_c}{\pi ^2}}}{​{​{f_r}^2}}\int_{ - \infty }^\infty {\frac{1}{​{\sqrt {2\pi } {\sigma _t}}}{e^{ - {f^2}/2\sigma _t^2}}{f^2}df} \\ {\rm{ }} = \frac{​{4{P_c}{\pi ^2}}}{​{​{f_r}^2}}\sigma _t^2 \end{array}

(10)

       因此联立公式(7)和公式(10)可得MTI滤波器对杂波的功率增益为:

\frac{​{​{C_o}}}{​{​{C_i}}} = \frac{1}{​{CA}} = \frac{​{4{\pi ^2}\sigma _t^2}}{​{​{f_r}^2}}

(11)

       而对于雷达信号的回波信号通常是窄带信号,集中在某个特定的频率上,其频率特性相对稳定且集中在某个窄带范围内,因此,在无法考虑信号具体样式的情况下,信号的功率增益{S_o}/{S_i}可以用平均功率增益来表征。考虑到二脉冲滤波器传递函数的周期性,有:

\frac{​{​{S_o}}}{​{​{S_i}}} = \frac{1}{​{​{f_r}}}\int_0^{​{f_r}} {​{​{\left| {H\left( f \right)} \right|}^2}df} = \frac{1}{​{​{f_r}}}\int_0^{​{f_r}} {4{​{\sin }^2}\left( {\pi f/{f_r}} \right)df} = 2

(12)

图3  MTI二脉冲传递函数

       由此,联立公式(4)、(11)、(12)可得二脉冲滤波器的MTI改善因子为:

I = \frac{​{​{f_r}^2}}{​{2{\pi ^2}\sigma _t^2}}

(13)

  同理,根据N脉冲MTI对消器的传递函数:H\left( f \right) = {\left( {1 - {e^{ - j2\pi f{T_r}}}} \right)^N} = \sum\limits_{n = 0}^N {C_N^n{​{\left( { - 1} \right)}^n} \times {e^{ - j2\pi f{T_r}}}},对于N脉冲MTI滤波器改善因子可表示为:

{I_N} = \frac{2}{​{K_N^2\left( {2\left( {N - 1} \right) - 1} \right)!!}}{\left( {\frac{​{​{f_r}^2}}{​{4{\pi ^2}\sigma _t^2}}} \right)^{N - 1}}

(14)

图4 N脉冲MTI对消器结构示意图

其中,!!为双阶乘符号,定义如下:

\left( {2n - 1} \right)!! = 1 \times 3 \times 5 \times \cdots \times \left( {2n - 1} \right)

\left( {2n} \right)!! = 2 \times 4 \times 6 \times \cdots \times 2n

(15)

       K的定义为:

K_N^2 = \frac{1}{​{\sum\limits_{i = 1}^N {w_i^2} }}

(16)

其中,{w_i}为MTI滤波器的二次项系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值