银行理财子与券商合作探讨(四):券商银行理财子数字化合作蓝图

银行理财与券商合作探讨系列文章
银行理财子与券商合作探讨(一):银行理财子带给资本市场的机遇与挑战
银行理财子与券商合作探讨(二):银行与券商合作的现状与展望
银行理财子与券商合作探讨(三):银行理财子推动券商业务转型
银行理财子与券商合作探讨(四):券商银行理财子数字化合作蓝图


大资管发展到今天,资管机构间已经形成比较明显的分工协作的模式,主要存在资金来源机构、投资管理机构和通道机构的上下游关系。资金来源机构为产业上游机构,以银行为典型代表,主要利用客户渠道吸纳资金;投资管理机构为下游机构,以基金为典型代表,主要负责资金具体运作管理,实现收益;通道机构处于产业中游,以券商为代表,为银行等其他机构提供交易便利的同时,通过综合服务增加机构服务的粘性和附加价值。

大资管就是在这样的分工合作的模式下,历经多年的快速发展,在规模上升的同时,也暴露出诸多问题。最核心的两点是刚性兑付和产品多层嵌套,刚性兑付导致流动性风险,产品多层嵌套导致严重的监管套利。有人总结造成上述问题是大资管混业经营与分业监管的制度缺陷造成的,监管真空导致监管机构对现状“无可奈何”,巨大的协调沟通成本,让监管机构无从下手。

银行理财子公司的出现进一步推动了大资管产业链条的完善和整合,从产品销售、财富管理、机构交易、投资管理等形成全业务链条。虽然从传统企业竞争角度看,银行理财在资金募集端跟券商财富管理形成竞争关系,在资产管理端与基金公司、券商资管也是明显的竞争关系。但在以合作共赢为主基调的数字经济时代,大资管行业各方应该首先聚焦理财客户的新价值创造,建立合作共赢的共生机制才是正确的商业逻辑。

券商要想扮演大资管生态服务主导者角色,对内需要依托机构经纪部门整合研究所、资管、投行、财富管理等部门的能力,围绕银行理财子提供一站式机构服务;对外需要更加有效的监管沟通,降低产品创设、运营的监管沟通成本,避免再次发生监管真空的系统性风险。对于券商来说,这是一次极佳的数字化变革的机会,对于大资管分业监管来说,这又是一次监管科技与金融科技深度结合的一次有益的尝试。解决好机构服务数字化的券商,将会在银行理财子提供的资本市场的机会中拔得头筹。下图阐述的是以机构经纪为主体,券商面向银行理财子进行数字化改造的一种蓝图设计规划。

在这里插入图片描述

券商面向银行理财子的机构服务数字化蓝图

在这个蓝图规划中,需要重点解决几个问题:

1)多机构协作业务闭环

这里的核心是券商投研驱动整个价值链的合作。券商投研针对银行理财子客群设计针对性的理财产品,比如某种FOF/MOM产品,再通过券商买方投顾服务,推动银行理财子的投决系统,最终通过银行理财子的资管系统或者pb投资终端系统与券商机构经纪业务系统对接,实现专业投资、业务运营等的业务的对接,进而完成业务闭环。这里券商需要发挥对场内外交易品种的研究方面的特长,结合自己经营多年的pb业务运营数据,建立特色金融产品设计,进而产生核心驱动力。当券商投研效果得到银行理财子认可,会推动机构交易落地到券商,大资金引入又会带动基金公司与券商合作,最终逐步产生协同网络扩张效应。

2)数据智能体现在智能投研上

券商&银行理财子大协作生态的成立需要协同网络效应和数据智能服务,在机构经纪的数字化蓝图里,数据智能具体落地就是智能投研能力。比如,一个好的FOF/MOM产品的设计离不开大数据的支持,这里涉及传统三方数据、基金产品数据、基金管理人数据,这些数据一方面来自于公开数据,一方面来自机构服务的运营大数据。为了增加这份大数据的可用性、易用性,我们需要引入画像技术,对基金产品及管理人做360度画像,并在此基础上做因子加工、金工指标设计,这里需要将人工智能和传统金融工程结合在一起。大量的运营数据会形成样本数据推动模型改造,形成活数据业务闭环。这里我们可以看到,在传统内外部金融大数据基础上,在投研结果输出之下,需要构建一套智能投研的生产线,为画像、因子加工、业务指标设计、业务模型建立提供AI赋能,这里就是智能投研,也是驱动整个生态链的金融大脑。在深度合作的未来,券商还需将这部分能力输出到银行理财子投决系统中去,这时,就不只是投研结果输出,还有模型、样本数据、训练数据等等。

3)券商机构服务中台

既然数据智能是核心驱动力,那么如何将分散在不同业务板块针对机构服务客户的能力聚合在一起,如何将机构服务的数据进行统一管理和使用,就成了生态蓝图中首先要做的事情。目前券商机构客户服务分散在机构经纪、财富管理、资产管理、投行系统中,将这部分业务统一起来就形成机构客户共享服务中台;将分散在不同业务板块的产品服务整合在一起,就形成了机构产品共享服务中台;将量化交易、算法交易、代理交易这类复杂交易能力整合起来可以形成机构经纪交易的共享服务中台。当然这不只是IT能力的整合,具体实操的过程中还需要流程治理和数据治理,流程治理体现落地的是券商内部各个业务条线为一站式机构服务进行协作共享,最终实现端到端的客户服务运营体系。数据治理则在数据层面建立共享复用的标准,这是以金融大数据中心的落地、数据中台的落地为结果输出的。

©️2020 CSDN 皮肤主题: 游动-白 设计师:上身试试 返回首页