这里不多bb,主要是介绍几个用python求解优化问题的包:scipy,CVXOPT
比如求解一个比较简单的方程
看这个链接:
9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题https://wizardforcel.gitbooks.io/python-quant-uqer/content/192.html
还有用python解方程的问题:
用Python解数学方程,需要用到Python的一个库——SymPy库。
SymPy是符号数学的Python库,它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。
本文介绍了使用Python解决优化问题的两个库:scipy和CVXOPT。scipy库在解决数学问题时非常实用,而CVXOPT则专注于凸优化,特别是二次规划问题。通过链接提供的教程,你可以学习如何利用CVXOPT解决二次规划问题。此外,还提到了SymPy库,这是一个用于符号数学的Python库,可用于解数学方程,致力于成为全面的计算机代数系统。
1922

被折叠的 条评论
为什么被折叠?



