python学习——用python解方程,求解优化问题

本文介绍了使用Python解决优化问题的两个库:scipy和CVXOPT。scipy库在解决数学问题时非常实用,而CVXOPT则专注于凸优化,特别是二次规划问题。通过链接提供的教程,你可以学习如何利用CVXOPT解决二次规划问题。此外,还提到了SymPy库,这是一个用于符号数学的Python库,可用于解数学方程,致力于成为全面的计算机代数系统。
摘要由CSDN通过智能技术生成

这里不多bb,主要是介绍几个用python求解优化问题的包:scipy,CVXOPT 

比如求解一个比较简单的方程

看这个链接:

9.3 凸优化 · 如何在 Python 中利用 CVXOPT 求解二次规划问题https://wizardforcel.gitbooks.io/python-quant-uqer/content/192.html

还有用python解方程的问题:

用Python解数学方程,需要用到Python的一个库——SymPy库。

SymPy是符号数学的Python库,它的目标是成为一个全功能的计算机代数系统,同时保持代码简洁、易于理解和扩展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

量化橙同学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值