- 博客(6)
- 资源 (7)
- 收藏
- 关注
原创 自然语言处理——蕴含关系的定义
文本蕴含关系的定义文本蕴含的概念由Dagan 等人[1]于2004年首次提出,其定义如下:定义1.文本蕴含定义为一对文本之间的有向推理关系,其中蕴含前件记作T(Text),蕴含后件记作H(Hypothesis)。如果人们依据自己的常识认为H的语义能够由T的语义推理得出的话,那么称T蕴含H,记作T → H[1] 。举例来说,T1-H1符合前述文本蕴含的定义,它们的关系称为阳性蕴含关系(Positive Textual Entailment)。在不引起歧义的情况下,可以将阳性蕴含关系简称为蕴...
2020-10-29 10:55:24
3940
原创 自监督学习——对比学习自监督
关于Bert的无监督聚类的一些说法1.首先一点是在不finetune的情况下,cosine similairty绝对值没有实际意义,bert pretrain计算的cosine similairty都是很大的,如果你直接以cosine similariy>0.5之类的阈值来判断相似不相似那肯定效果很差。如果用做排序,也就是cosine(a,b)>cosine(a,c)->b相较于c和a更相似,是可以用的。总而言之就是你模型评价的标准应该使用auc,而不是accuracy2.短文本(新闻
2020-10-29 10:42:53
750
原创 学会提问———阅读笔记
推荐词:在阅读这本书之前,我常常面临一个困惑,那就是在日常上课以及听讲座亦或是在与人交流的时候如何能够切实有效的提出一些高质量的问题呢?在发现这本书之后,我想我解答了自己的这个疑惑。这本书教授了我们批判性的提问技能。我相信在上了自然辩证法课程以及阅读了这本书之后,再经过我们不断的练习提出和自我回答这些批判性思维的问题,能够帮助我们很好的巩固知识,提升和他人思想碰撞的效率,更加深度的理解世界的运行方式。而且这本书语言诙谐风趣,面向大众,是一本很好的书。在这本书中,作者一再强调的内容是提升每个人的分析思考推
2020-10-12 20:02:57
423
原创 金融时间序列分析——对收益率序列平稳化处理
在逛博客的时候,从AI研习社里看到了一篇文章,最新的优化深度学习交易机器人技术,讲到了一个常用的方式,下图中的三个图中描述的时间序列分别是原始的价格数据,以及做了差分(比如一步的差分其实就是今天的价格和昨天的价格相减再除以昨天的价格),以及对原始数据取对数然后再差分的时间序列的图。之所以这样处理的原因是数据不是平稳的,因此,任何机器学习模型都很难预测未来值。 最重要的是,我们的时间序列包含明显的趋势和季节性,这两者都会影响我们的算法准确预测时间序列的能力。 我们可以通过使用差分和变换技术..
2020-10-10 13:03:23
3746
原创 金融时间序列分析——学习金融时间序列之间的时序关系
这是一篇ICASSP 2018里的文章,文章LEARNING TEMPORAL RELATIONSHIPS BETWEEN FINANCIAL SIGNALS这篇文章提供的是一个分析金融时序之间temporal关系的方法1.通过市场敏感性因子alpha,自相关参数gama,关系参数omiga提供了两个标的之间的关联以这三者为参数来构造了一个回归模型总体来说分为如下的几个部分首先定义了这个回归任务的形式,标准的回归任务是一个这样的形态,文章中加入了一个factor ϕ,得到了如..
2020-10-09 14:07:08
1168
opengl的3d漫游迷宫源码
2017-10-02
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅